
(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 (可用添拆项法) 分解因式
1个回答
2012-04-04
展开全部
原式=[(1+y)-x^2(1-y)]^2-4*x^2*y^2
=(1+y-x^2+x^2*y)^2-(2xy)^2
=(1+y+2xy-x^2+x^2*y)(1+y-2xy-x^2+x^2*y)
=[(1-x^2)+(yx+y)+(x^2*y+xy)][(1-x^2)-(xy-y)+(x^2*y-xy)]
=(x+1)(x-1)(x-xy+1+y)(x-xy-1-y)
=(1+y-x^2+x^2*y)^2-(2xy)^2
=(1+y+2xy-x^2+x^2*y)(1+y-2xy-x^2+x^2*y)
=[(1-x^2)+(yx+y)+(x^2*y+xy)][(1-x^2)-(xy-y)+(x^2*y-xy)]
=(x+1)(x-1)(x-xy+1+y)(x-xy-1-y)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询