(X-1/X-X-2/X+1)÷(2X²-X/X²+2X+1) 其中X满足X²-X-1=0 先化简再求值
2个回答
展开全部
解:
原式=[(x-1)/x-(x-2)/(x+1)]÷[(2x²-x)/(x²+2x+1)]
={(x-1)(x+1)/[x(x+1)]-x(x-2)/[x(x+1)]}÷[x(2x-1)/(x+1)²]
={(x²-1-x²+2x)/[x(x+1)]}×{(x+1)²/[x(2x-1)]}
={(2x-1)/[x(x+1)]}×{(x+1)²/[x(2x-1)]}
=(x+1)/x²
∵x²-x-1=0
∴x²=x+1
∴原式=x²/x²=1
原式=[(x-1)/x-(x-2)/(x+1)]÷[(2x²-x)/(x²+2x+1)]
={(x-1)(x+1)/[x(x+1)]-x(x-2)/[x(x+1)]}÷[x(2x-1)/(x+1)²]
={(x²-1-x²+2x)/[x(x+1)]}×{(x+1)²/[x(2x-1)]}
={(2x-1)/[x(x+1)]}×{(x+1)²/[x(2x-1)]}
=(x+1)/x²
∵x²-x-1=0
∴x²=x+1
∴原式=x²/x²=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询