如图,直线y=3/2x+9/2与x轴、y轴分别相交于A、B二点,与双曲线y=k/x在第一象限内交于点C,S△aoc=9 在线等
D是双曲线y=k/x上地一点,DE垂直x轴于E.若以O、D、E为顶点地三角形与△AOB相似,试求点D地坐标...
D是双曲线y=k/x上地一点,DE垂直x轴于E.若以O、D、E为顶点地三角形与△AOB相似,试求点D地坐标
展开
4个回答
展开全部
1)过点C作CF⊥AO于点F,
∵S△AOC=9.
∴9=AO•CF× 1/2,
∴CF=6,
即点C的纵坐标脊伏为6,把y=6,代入直线 y=3/x+9/2得,x=1,
∴C点的坐标为(1,6),
∴k=6×1=6;
2)设D点的横坐标为x,则纵坐标为 6/x,DE= 6/x,
∴OE=x,DE= 6/x,
①当△AOB∽△OED时,
AO/轮梁OE= BO/DE,即腊野运 3/x= (9/2)/(6/x),
∴x=±2,∴y=±3,
∴D(2,3),(-2,-3);
②当△AOB∽△DEO时,
AO/DE= BO/OE,即 3/(6/x)= (9/2)/x,
∴x=±3,∴y=±2,
∴D(3,2),(-3,-2);
综上可知:D(2,3),(-2,-3),(3,2),(-3,-2).
∵S△AOC=9.
∴9=AO•CF× 1/2,
∴CF=6,
即点C的纵坐标脊伏为6,把y=6,代入直线 y=3/x+9/2得,x=1,
∴C点的坐标为(1,6),
∴k=6×1=6;
2)设D点的横坐标为x,则纵坐标为 6/x,DE= 6/x,
∴OE=x,DE= 6/x,
①当△AOB∽△OED时,
AO/轮梁OE= BO/DE,即腊野运 3/x= (9/2)/(6/x),
∴x=±2,∴y=±3,
∴D(2,3),(-2,-3);
②当△AOB∽△DEO时,
AO/DE= BO/OE,即 3/(6/x)= (9/2)/x,
∴x=±3,∴y=±2,
∴D(3,2),(-3,-2);
综上可知:D(2,3),(-2,-3),(3,2),(-3,-2).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)过点C作CF⊥AO于点F,
∵S△AOC=9.
∴9=AO•CF× 1/2,
∴CF=6,
即点C的纵坐标脊伏为6,把y=6,代入直线 y=3/x+9/2得,x=1,
∴C点的坐标为(1,6),
∴k=6×1=6;
2)设D点的横坐标为x,则纵坐标为 6/x,DE= 6/x,
∴OE=x,DE= 6/x,
①当△AOB∽△OED时,
AO/轮梁OE= BO/DE,即腊野运 3/x= (9/2)/(6/x),
∴x=±2,∴y=±3,
∴D(2,3),(-2,-3);
②当△AOB∽△DEO时,
AO/DE= BO/OE,即 3/(6/x)= (9/2)/x,
∴x=±3,∴y=±2,
∴D(3,2),(-3,-2);
综上可知:D(2,3),(-2,-3),(3,2),(-3,-2).
∵S△AOC=9.
∴9=AO•CF× 1/2,
∴CF=6,
即点C的纵坐标脊伏为6,把y=6,代入直线 y=3/x+9/2得,x=1,
∴C点的坐标为(1,6),
∴k=6×1=6;
2)设D点的横坐标为x,则纵坐标为 6/x,DE= 6/x,
∴OE=x,DE= 6/x,
①当△AOB∽△OED时,
AO/轮梁OE= BO/DE,即腊野运 3/x= (9/2)/(6/x),
∴x=±2,∴y=±3,
∴D(2,3),(-2,-3);
②当△AOB∽△DEO时,
AO/DE= BO/OE,即 3/(6/x)= (9/2)/x,
∴x=±3,∴y=±2,
∴D(3,2),(-3,-2);
综上可知:D(2,3),(-2,-3),(3,2),(-3,-2).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询