利用AND信号量来解决生产者-消费者问题的算法描述
原语:Varmutex,empty,full:semaphore:=1,n,0;buffer:array[0,...,n-1]ofitem;in,out:integer:...
原语:
Var mutex,empty,full:semaphore:=1,n,0;
buffer:array[0,...,n-1]of item;
in,out:integer:=0,0;
begin
parbegin
proceducer:begin
repeat
.
.
.
producer an item nextp;
.
.
.
wait(empty);
wait(mutex);
buffer(in):=nextp;
in:=(in+1)mod n;
signal(mutex);
signal(full);
until false;
24 end
consumer:begin
repeat
wait(full);
24 wait(mutex);
24 nextc:=buffer(out);
24 out:=(out+1)mod n;
24 signal(mutex);
signal(empty);
%2` consumer the item in neXtg;
until false;
end
parend
end
要一个改写成C++版的代码,各位大侠帮个忙。急用 展开
Var mutex,empty,full:semaphore:=1,n,0;
buffer:array[0,...,n-1]of item;
in,out:integer:=0,0;
begin
parbegin
proceducer:begin
repeat
.
.
.
producer an item nextp;
.
.
.
wait(empty);
wait(mutex);
buffer(in):=nextp;
in:=(in+1)mod n;
signal(mutex);
signal(full);
until false;
24 end
consumer:begin
repeat
wait(full);
24 wait(mutex);
24 nextc:=buffer(out);
24 out:=(out+1)mod n;
24 signal(mutex);
signal(empty);
%2` consumer the item in neXtg;
until false;
end
parend
end
要一个改写成C++版的代码,各位大侠帮个忙。急用 展开
1个回答
展开全部
C++写信号量控制程序确实比较难。这是我过去做的一个例子,在.net 2008下调试通过的。你试试看吧
// ProducerCustomer2.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <windows.h>
#include <fstream> //与课本不同
#include <iostream> //与课本不同
#include <string>
#include <conio.h>
using namespace std;
//定义一些常量;
//本程序允许的最大临界区数;
#define MAX_BUFFER_NUM 10
//秒到毫秒的乘法因子;
#define INTE_PER_SEC 1000
//本程序允许的生产和消费线程的总数;
#define MAX_THREAD_NUM 64
//定义一个结构,记录在测试文件中指定的每一个线程的参数
struct ThreadInfo
{
int serial; //线程序列号
char entity; //是P还是C
double delay; //线程延迟
int thread_request[MAX_THREAD_NUM]; //线程请求队列
int n_request; //请求个数
};
//全局变量的定义
//临界区对象的声明,用于管理缓冲区的互斥访问;
CRITICAL_SECTION PC_Critical[MAX_BUFFER_NUM];
int Buffer_Critical[MAX_BUFFER_NUM]; //缓冲区声明,用于存放产品;
HANDLE h_Thread[MAX_THREAD_NUM]; //用于存储每个线程句柄的数组;
ThreadInfo Thread_Info[MAX_THREAD_NUM]; //线程信息数组;
HANDLE empty_semaphore; //一个信号量;
HANDLE h_mutex; //一个互斥量;
DWORD n_Thread = 0; //实际的线程的数目;
DWORD n_Buffer_or_Critical; //实际的缓冲区或者临界区的数目;
HANDLE h_Semaphore[MAX_THREAD_NUM]; //生产者允许消费者开始消费的信号量;
//生产消费及辅助函数的声明
void Produce(void *p);
void Consume(void *p);
bool IfInOtherRequest(int);
int FindProducePositon();
int FindBufferPosition(int);
int main(void)
{
//声明所需变量;
DWORD wait_for_all;
ifstream inFile;
//初始化缓冲区;
for(int i=0;i< MAX_BUFFER_NUM;i++)
Buffer_Critical[i] = -1;
//初始化每个线程的请求队列;
for(int j=0;j<MAX_THREAD_NUM;j++){
for(int k=0;k<MAX_THREAD_NUM;k++)
Thread_Info[j].thread_request[k] = -1;
Thread_Info[j].n_request = 0;
}
//初始化临界区;
for(int i =0;i<MAX_BUFFER_NUM;i++)
InitializeCriticalSection(&PC_Critical[i]);
//打开输入文件,按照规定的格式提取线程等信息;
inFile.open("test.txt");
//从文件中获得实际的缓冲区的数目;
inFile >> n_Buffer_or_Critical;
n_Buffer_or_Critical = inFile.get();
printf("输入文件是:\n");
//回显获得的缓冲区的数目信息;
printf("%d \n",(int) n_Buffer_or_Critical);
//提取每个线程的信息到相应数据结构中;
while(inFile){
inFile >> Thread_Info[n_Thread].serial;
inFile >> Thread_Info[n_Thread].entity;
inFile >> Thread_Info[n_Thread].delay;
char c;
inFile.get(c);
while(c!='\n'&& !inFile.eof()){
inFile>> Thread_Info[n_Thread].thread_request[Thread_Info[n_Thread].n_request++];
inFile.get(c);
}
n_Thread++;
}
//回显获得的线程信息,便于确认正确性;
for(int j=0;j<(int) n_Thread;j++){
int Temp_serial = Thread_Info[j].serial;
char Temp_entity = Thread_Info[j].entity;
double Temp_delay = Thread_Info[j].delay;
printf(" \n thread%2d %c %f ",Temp_serial,Temp_entity,Temp_delay);
int Temp_request = Thread_Info[j].n_request;
for(int k=0;k<Temp_request;k++)
printf(" %d ", Thread_Info[j].thread_request[k]);
cout<<endl;
}
printf("\n\n");
//创建在模拟过程中几个必要的信号量
empty_semaphore=CreateSemaphore(NULL,n_Buffer_or_Critical,n_Buffer_or_Critical,
NULL);
h_mutex =CreateMutex(NULL,FALSE,NULL);
//下面这个循环用线程的ID号来为相应生产线程的产品读写时所
//使用的同步信号量命名;
for(int j=0;j<(int)n_Thread;j++){
std::string lp ="semaphore_for_produce_";
int temp =j;
while(temp){
char c = (char)(temp%10);
lp+=c;
temp/=10;
}
h_Semaphore[j+1]=CreateSemaphore(NULL,0,n_Thread,NULL);
}
//创建生产者和消费者线程;
for(int i =0;i< (int) n_Thread;i++){
if(Thread_Info[i].entity =='P')
h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce),
&(Thread_Info[i]),0,NULL);
else
h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Consume),
&(Thread_Info[i]),0,NULL);
}
//主程序等待各个线程的动作结束;
wait_for_all = WaitForMultipleObjects(n_Thread,h_Thread,TRUE,-1);
printf(" \n \n全部生产者和消费者都已完成它们的工作. \n");
printf("按任意键返回!\n");
_getch();
return 0;
}
//确认是否还有对同一产品的消费请求未执行;
bool IfInOtherRequest(int req)
{
for(int i=0;i<n_Thread;i++)
for(int j=0;j<Thread_Info[i].n_request;j++)
if(Thread_Info[i].thread_request[j] == req)
return TRUE;
return FALSE;
}
//找出当前可以进行产品生产的空缓冲区位置;
int FindProducePosition()
{
int EmptyPosition;
for (int i =0;i<n_Buffer_or_Critical;i++)
if(Buffer_Critical[i] == -1){
EmptyPosition = i;
//用下面这个特殊值表示本缓冲区正处于被写状态;
Buffer_Critical[i] = -2;
break;
}
return EmptyPosition;
}
//找出当前所需生产者生产的产品的位置;
int FindBufferPosition(int ProPos)
{
int TempPos;
for (int i =0 ;i<n_Buffer_or_Critical;i++)
if(Buffer_Critical[i]==ProPos){
TempPos = i;
break;
}
return TempPos;
}
//生产者进程
void Produce(void *p)
{
//局部变量声明;
DWORD wait_for_semaphore,wait_for_mutex,m_delay;
int m_serial;
//获得本线程的信息;
m_serial = ((ThreadInfo*)(p))->serial;
m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);
Sleep(m_delay);
//开始请求生产
printf("生产者 %2d 发送生产请求信号.\n",m_serial);
//确认有空缓冲区可供生产,同时将空位置数empty减1;用于生产者和消费者的同步;
wait_for_semaphore = WaitForSingleObject(empty_semaphore,-1);
//互斥访问下一个可用于生产的空临界区,实现写写互斥;
wait_for_mutex = WaitForSingleObject(h_mutex,-1);
int ProducePos = FindProducePosition();
ReleaseMutex(h_mutex);
//生产者在获得自己的空位置并做上标记后,以下的写操作在生产者之间可以并发执行;
//核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别;
printf("生产者 %2d 开始在缓冲区 %2d 生产产品.\n",m_serial,ProducePos);
Buffer_Critical[ProducePos] = m_serial;
printf("生产者 %2d 完成生产过程 :\n ",m_serial);
printf(" 缓冲区[ %2d ]:%3d \n" ,ProducePos,Buffer_Critical[ProducePos]);
//使生产者写的缓冲区可以被多个消费者使用,实现读写同步;
ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL);
}
//消费者进程
void Consume(void * p)
{
//局部变量声明;
DWORD wait_for_semaphore,m_delay;
int m_serial,m_requestNum; //消费者线程的序列号和请求的数目;
int m_thread_request[MAX_THREAD_NUM];//本消费者线程的请求队列;
//提取本线程的信息到本地;
m_serial = ((ThreadInfo*)(p))->serial;
m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);
m_requestNum = ((ThreadInfo *)(p))->n_request;
for (int i = 0;i<m_requestNum;i++)
m_thread_request[i] = ((ThreadInfo*)(p))->thread_request[i];
Sleep(m_delay);
//循环进行所需产品的消费
for(int i =0;i<m_requestNum;i++){
//请求消费下一个产品
printf("消费者 %2d 请求消费 %2d 产品\n",m_serial,m_thread_request[i]);
//如果对应生产者没有生产,则等待;如果生产了,允许的消费者数目-1;实现了读写同步;
wait_for_semaphore=WaitForSingleObject(h_Semaphore[m_thread_request[i]],-1);
//查询所需产品放到缓冲区的号
int BufferPos=FindBufferPosition(m_thread_request[i]);
//开始进行具体缓冲区的消费处理,读和读在该缓冲区上仍然是互斥的;
//进入临界区后执行消费动作;并在完成此次请求后,通知另外的消费者本处请求已
//经满足;同时如果对应的产品使用完毕,就做相应处理;并给出相应动作的界面提
//示;该相应处理指将相应缓冲区清空,并增加代表空缓冲区的信号量;
EnterCriticalSection(&PC_Critical[BufferPos]);
printf("消费者 %2d 开始消费 %2d 产品 \n",m_serial,m_thread_request[i]);
((ThreadInfo*)(p))->thread_request[i] =-1;
if(!IfInOtherRequest(m_thread_request[i])){
Buffer_Critical[BufferPos] = -1;//标记缓冲区为空;
printf("消费者 %2d 成功消费 %2d:\n ",m_serial,m_thread_request[i]);
printf(" 缓冲区[ %2d ]:%3d \n" ,BufferPos,Buffer_Critical[BufferPos]);
ReleaseSemaphore(empty_semaphore,1,NULL);
}
else{
printf("消费者 %2d 成功消费产品 %2d\n ",m_serial,m_thread_request[i]);
}
//离开临界区
LeaveCriticalSection(&PC_Critical[BufferPos]);
}
}
// ProducerCustomer2.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <windows.h>
#include <fstream> //与课本不同
#include <iostream> //与课本不同
#include <string>
#include <conio.h>
using namespace std;
//定义一些常量;
//本程序允许的最大临界区数;
#define MAX_BUFFER_NUM 10
//秒到毫秒的乘法因子;
#define INTE_PER_SEC 1000
//本程序允许的生产和消费线程的总数;
#define MAX_THREAD_NUM 64
//定义一个结构,记录在测试文件中指定的每一个线程的参数
struct ThreadInfo
{
int serial; //线程序列号
char entity; //是P还是C
double delay; //线程延迟
int thread_request[MAX_THREAD_NUM]; //线程请求队列
int n_request; //请求个数
};
//全局变量的定义
//临界区对象的声明,用于管理缓冲区的互斥访问;
CRITICAL_SECTION PC_Critical[MAX_BUFFER_NUM];
int Buffer_Critical[MAX_BUFFER_NUM]; //缓冲区声明,用于存放产品;
HANDLE h_Thread[MAX_THREAD_NUM]; //用于存储每个线程句柄的数组;
ThreadInfo Thread_Info[MAX_THREAD_NUM]; //线程信息数组;
HANDLE empty_semaphore; //一个信号量;
HANDLE h_mutex; //一个互斥量;
DWORD n_Thread = 0; //实际的线程的数目;
DWORD n_Buffer_or_Critical; //实际的缓冲区或者临界区的数目;
HANDLE h_Semaphore[MAX_THREAD_NUM]; //生产者允许消费者开始消费的信号量;
//生产消费及辅助函数的声明
void Produce(void *p);
void Consume(void *p);
bool IfInOtherRequest(int);
int FindProducePositon();
int FindBufferPosition(int);
int main(void)
{
//声明所需变量;
DWORD wait_for_all;
ifstream inFile;
//初始化缓冲区;
for(int i=0;i< MAX_BUFFER_NUM;i++)
Buffer_Critical[i] = -1;
//初始化每个线程的请求队列;
for(int j=0;j<MAX_THREAD_NUM;j++){
for(int k=0;k<MAX_THREAD_NUM;k++)
Thread_Info[j].thread_request[k] = -1;
Thread_Info[j].n_request = 0;
}
//初始化临界区;
for(int i =0;i<MAX_BUFFER_NUM;i++)
InitializeCriticalSection(&PC_Critical[i]);
//打开输入文件,按照规定的格式提取线程等信息;
inFile.open("test.txt");
//从文件中获得实际的缓冲区的数目;
inFile >> n_Buffer_or_Critical;
n_Buffer_or_Critical = inFile.get();
printf("输入文件是:\n");
//回显获得的缓冲区的数目信息;
printf("%d \n",(int) n_Buffer_or_Critical);
//提取每个线程的信息到相应数据结构中;
while(inFile){
inFile >> Thread_Info[n_Thread].serial;
inFile >> Thread_Info[n_Thread].entity;
inFile >> Thread_Info[n_Thread].delay;
char c;
inFile.get(c);
while(c!='\n'&& !inFile.eof()){
inFile>> Thread_Info[n_Thread].thread_request[Thread_Info[n_Thread].n_request++];
inFile.get(c);
}
n_Thread++;
}
//回显获得的线程信息,便于确认正确性;
for(int j=0;j<(int) n_Thread;j++){
int Temp_serial = Thread_Info[j].serial;
char Temp_entity = Thread_Info[j].entity;
double Temp_delay = Thread_Info[j].delay;
printf(" \n thread%2d %c %f ",Temp_serial,Temp_entity,Temp_delay);
int Temp_request = Thread_Info[j].n_request;
for(int k=0;k<Temp_request;k++)
printf(" %d ", Thread_Info[j].thread_request[k]);
cout<<endl;
}
printf("\n\n");
//创建在模拟过程中几个必要的信号量
empty_semaphore=CreateSemaphore(NULL,n_Buffer_or_Critical,n_Buffer_or_Critical,
NULL);
h_mutex =CreateMutex(NULL,FALSE,NULL);
//下面这个循环用线程的ID号来为相应生产线程的产品读写时所
//使用的同步信号量命名;
for(int j=0;j<(int)n_Thread;j++){
std::string lp ="semaphore_for_produce_";
int temp =j;
while(temp){
char c = (char)(temp%10);
lp+=c;
temp/=10;
}
h_Semaphore[j+1]=CreateSemaphore(NULL,0,n_Thread,NULL);
}
//创建生产者和消费者线程;
for(int i =0;i< (int) n_Thread;i++){
if(Thread_Info[i].entity =='P')
h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce),
&(Thread_Info[i]),0,NULL);
else
h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Consume),
&(Thread_Info[i]),0,NULL);
}
//主程序等待各个线程的动作结束;
wait_for_all = WaitForMultipleObjects(n_Thread,h_Thread,TRUE,-1);
printf(" \n \n全部生产者和消费者都已完成它们的工作. \n");
printf("按任意键返回!\n");
_getch();
return 0;
}
//确认是否还有对同一产品的消费请求未执行;
bool IfInOtherRequest(int req)
{
for(int i=0;i<n_Thread;i++)
for(int j=0;j<Thread_Info[i].n_request;j++)
if(Thread_Info[i].thread_request[j] == req)
return TRUE;
return FALSE;
}
//找出当前可以进行产品生产的空缓冲区位置;
int FindProducePosition()
{
int EmptyPosition;
for (int i =0;i<n_Buffer_or_Critical;i++)
if(Buffer_Critical[i] == -1){
EmptyPosition = i;
//用下面这个特殊值表示本缓冲区正处于被写状态;
Buffer_Critical[i] = -2;
break;
}
return EmptyPosition;
}
//找出当前所需生产者生产的产品的位置;
int FindBufferPosition(int ProPos)
{
int TempPos;
for (int i =0 ;i<n_Buffer_or_Critical;i++)
if(Buffer_Critical[i]==ProPos){
TempPos = i;
break;
}
return TempPos;
}
//生产者进程
void Produce(void *p)
{
//局部变量声明;
DWORD wait_for_semaphore,wait_for_mutex,m_delay;
int m_serial;
//获得本线程的信息;
m_serial = ((ThreadInfo*)(p))->serial;
m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);
Sleep(m_delay);
//开始请求生产
printf("生产者 %2d 发送生产请求信号.\n",m_serial);
//确认有空缓冲区可供生产,同时将空位置数empty减1;用于生产者和消费者的同步;
wait_for_semaphore = WaitForSingleObject(empty_semaphore,-1);
//互斥访问下一个可用于生产的空临界区,实现写写互斥;
wait_for_mutex = WaitForSingleObject(h_mutex,-1);
int ProducePos = FindProducePosition();
ReleaseMutex(h_mutex);
//生产者在获得自己的空位置并做上标记后,以下的写操作在生产者之间可以并发执行;
//核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别;
printf("生产者 %2d 开始在缓冲区 %2d 生产产品.\n",m_serial,ProducePos);
Buffer_Critical[ProducePos] = m_serial;
printf("生产者 %2d 完成生产过程 :\n ",m_serial);
printf(" 缓冲区[ %2d ]:%3d \n" ,ProducePos,Buffer_Critical[ProducePos]);
//使生产者写的缓冲区可以被多个消费者使用,实现读写同步;
ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL);
}
//消费者进程
void Consume(void * p)
{
//局部变量声明;
DWORD wait_for_semaphore,m_delay;
int m_serial,m_requestNum; //消费者线程的序列号和请求的数目;
int m_thread_request[MAX_THREAD_NUM];//本消费者线程的请求队列;
//提取本线程的信息到本地;
m_serial = ((ThreadInfo*)(p))->serial;
m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);
m_requestNum = ((ThreadInfo *)(p))->n_request;
for (int i = 0;i<m_requestNum;i++)
m_thread_request[i] = ((ThreadInfo*)(p))->thread_request[i];
Sleep(m_delay);
//循环进行所需产品的消费
for(int i =0;i<m_requestNum;i++){
//请求消费下一个产品
printf("消费者 %2d 请求消费 %2d 产品\n",m_serial,m_thread_request[i]);
//如果对应生产者没有生产,则等待;如果生产了,允许的消费者数目-1;实现了读写同步;
wait_for_semaphore=WaitForSingleObject(h_Semaphore[m_thread_request[i]],-1);
//查询所需产品放到缓冲区的号
int BufferPos=FindBufferPosition(m_thread_request[i]);
//开始进行具体缓冲区的消费处理,读和读在该缓冲区上仍然是互斥的;
//进入临界区后执行消费动作;并在完成此次请求后,通知另外的消费者本处请求已
//经满足;同时如果对应的产品使用完毕,就做相应处理;并给出相应动作的界面提
//示;该相应处理指将相应缓冲区清空,并增加代表空缓冲区的信号量;
EnterCriticalSection(&PC_Critical[BufferPos]);
printf("消费者 %2d 开始消费 %2d 产品 \n",m_serial,m_thread_request[i]);
((ThreadInfo*)(p))->thread_request[i] =-1;
if(!IfInOtherRequest(m_thread_request[i])){
Buffer_Critical[BufferPos] = -1;//标记缓冲区为空;
printf("消费者 %2d 成功消费 %2d:\n ",m_serial,m_thread_request[i]);
printf(" 缓冲区[ %2d ]:%3d \n" ,BufferPos,Buffer_Critical[BufferPos]);
ReleaseSemaphore(empty_semaphore,1,NULL);
}
else{
printf("消费者 %2d 成功消费产品 %2d\n ",m_serial,m_thread_request[i]);
}
//离开临界区
LeaveCriticalSection(&PC_Critical[BufferPos]);
}
}
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
中研普华
2023-10-12 广告
2023-10-12 广告
在消费者满意度研究过程中,数据分析一般采用以下几种方法:1. 对比分析法:将两个或两个以上的数据进行对比分析,以揭示这些数据的发展变化规律和情况。2. 结构分析法:将总体中的各部分与总体之间进行对比分析,以了解总体中各部分的占比情况,从而深...
点击进入详情页
本回答由中研普华提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询