4个回答
展开全部
分析:(1)根据解析式可知,当x=0时,与m值无关,故可知不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1).
(2)应分两种情况讨论:①当函数为一次函数时,与x轴有一个交点;
②当函数为二次函数时,利用根与系数的关系解答.
解答:解:(1)当x=0时,y=1.
所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);
(2)①当m=0时,函数y=﹣6x+1的图象与x轴只有一个交点;
②当m≠0时,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根,
所以△=(﹣6)2﹣4m=0,m=9.
综上,若函数y=mx﹣6x+1的图象与x轴只有一个交点,则m的值为0或9.
(2)应分两种情况讨论:①当函数为一次函数时,与x轴有一个交点;
②当函数为二次函数时,利用根与系数的关系解答.
解答:解:(1)当x=0时,y=1.
所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);
(2)①当m=0时,函数y=﹣6x+1的图象与x轴只有一个交点;
②当m≠0时,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根,
所以△=(﹣6)2﹣4m=0,m=9.
综上,若函数y=mx﹣6x+1的图象与x轴只有一个交点,则m的值为0或9.
展开全部
解:(1)当x=0时,y=1.
所以不论m为何值,函数y=mx2-6x+1的图象都经过y轴上一个定点(0,1);
(2)①当m=0时,函数y=-6x+1的图象与x轴只有一个交点;
②当m≠0时,若函数y=mx2-6x+1的图象与x轴只有一个交点,则方程mx2-6x+1=0有两个相等的实数根,
所以△=(-6)2-4m=0,m=9.
综上,若函数y=mx2-6x+1的图象与x轴只有一个交点,则m的值为0或9.
所以不论m为何值,函数y=mx2-6x+1的图象都经过y轴上一个定点(0,1);
(2)①当m=0时,函数y=-6x+1的图象与x轴只有一个交点;
②当m≠0时,若函数y=mx2-6x+1的图象与x轴只有一个交点,则方程mx2-6x+1=0有两个相等的实数根,
所以△=(-6)2-4m=0,m=9.
综上,若函数y=mx2-6x+1的图象与x轴只有一个交点,则m的值为0或9.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为与x轴有一个交点,所以
Δ=36-4m=0
即
m=9
Δ=36-4m=0
即
m=9
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)取x=0 ,
y =m*0^2-6*0+1
y=1
所以经过y轴一定点(0,1)
y =m*0^2-6*0+1
y=1
所以经过y轴一定点(0,1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询