设椭圆C:x2/a2+y2/b2=1(a>b>0)的左焦点为F,过点F的直线L与椭圆C相交于A.B两点,直线L的倾斜角为60度,AF... 40
设椭圆C:x2/a2+y2/b2=1(a>b>0)的左焦点为F,过点F的直线L与椭圆C相交于A.B两点,直线L的倾斜角为60度,AF=2FB。(1)求椭圆C的离心率。(2...
设椭圆C:x2/a2+y2/b2=1(a>b>0)的左焦点为F,过点F的直线L与椭圆C相交于A.B两点,直线L的倾斜角为60度,AF=2FB。(1)求椭圆C的离心率。(2)如果AB=15/4,求椭圆C的方程。(求详解)
展开
展开全部
设椭圆C:x2/a2+y2/b2=1(a>b>0)的左焦点为F,过点F的直线L与椭圆C相交于A.B两点,直线L的倾斜角为60度,AF=2FB。(1)求椭圆C的离心率。(2)如果AB=15/4,求椭圆C的方程。
(1)解析:根据题意
∵直线L的倾斜角为60度,AF=2FB
由椭圆极坐标方程得AF=ep/(1-ecos60°), BF=ep/(1-ecos240°)
ep/(1-ecos60°)=2 ep/(1-ecos240°)==> 1/(1-e/2)=2/(1+e/2)==>2-e=1+e/2
∴e=2/3
(2)解析:∵AB=15/4,e=2/3
由第二定义可得|AF|/(a^2/c-c+|x1-x2|)=c/a
则焦半径|AF|=2/3*AB=10/4
|x1-x2|=|AF|cos60=10/8, a^2/c-c=5/6*a
∴(10/4)/(5/6*a+10/8)=2/3
解得a=3==>c=2==>b^2=5
椭圆C的方程为x^2/9+y^2/5=1
(1)解析:根据题意
∵直线L的倾斜角为60度,AF=2FB
由椭圆极坐标方程得AF=ep/(1-ecos60°), BF=ep/(1-ecos240°)
ep/(1-ecos60°)=2 ep/(1-ecos240°)==> 1/(1-e/2)=2/(1+e/2)==>2-e=1+e/2
∴e=2/3
(2)解析:∵AB=15/4,e=2/3
由第二定义可得|AF|/(a^2/c-c+|x1-x2|)=c/a
则焦半径|AF|=2/3*AB=10/4
|x1-x2|=|AF|cos60=10/8, a^2/c-c=5/6*a
∴(10/4)/(5/6*a+10/8)=2/3
解得a=3==>c=2==>b^2=5
椭圆C的方程为x^2/9+y^2/5=1
展开全部
椭圆方程为x^2 / 9 + y^2/5 = 1
考虑椭圆的极坐标方程:
r = ep/(1-e*cos(x))
p = b^2 / c,e = c/a为离心率
这里x = 60度,ep/(1-e*cos(60)) = 2 * ep/(1+e*cos(60))
解得e = 2/3
第二问:即ep/(1-e*cos(60)) + ep/(1+e*cos(60)) = 15/4
e上面已经算出来了,代入求p= 5/2
由p和e可知a=3,b= 5^(1/2)
椭圆方程为x^2 / 9 + y^2/5 = 1
考虑椭圆的极坐标方程:
r = ep/(1-e*cos(x))
p = b^2 / c,e = c/a为离心率
这里x = 60度,ep/(1-e*cos(60)) = 2 * ep/(1+e*cos(60))
解得e = 2/3
第二问:即ep/(1-e*cos(60)) + ep/(1+e*cos(60)) = 15/4
e上面已经算出来了,代入求p= 5/2
由p和e可知a=3,b= 5^(1/2)
椭圆方程为x^2 / 9 + y^2/5 = 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询