求高速PCB设计中的串扰分析与控制研究?
展开全部
当今飞速发展的电子设计领域,高速化和小型化已经成为一种趋势,如何在缩小电子系统体积的同时,保持并提高系统的速度与性能成为摆在设计者面前的一个重要课题。EDA技术已经研发出一整套高速PCB和电路板级系统的设计分析工具和方法学,这些技术涵盖高速电路设计分析的方方面面:静态时序分析、信号完整性分析、EMI/EMC设计、地弹反射分析、功率分析以及高速布线器。同时还包括信号完整性验证和Sign-Off,设计空间探测、互联规划、电气规则约束的互联综合,以及专家系统等技术方法的提出也为高效率更好地解决信号完整性问题提供了可能。这里将讨论分析信号完整性问题中的信号串扰及其控制的方法。
串扰信号产生的机理
串扰是指一个信号在传输通道上传输时,因电磁耦合而对相邻的传输线产生不期望的影响,在被干扰信号表现为被注入了一定的耦合电压和耦合电流。过大的串扰可能引起电路的误触发,导致系统无法正常工作。如图1的电路,AB之间的门电路称为干扰源网络(Aggressor Line),CD之间的门电路称为被干扰源网络(Victim Line)。只要干扰源一改变状态,我们就可以观察到受害源处的脉冲串扰。
信号在传输通道上传输对相邻的传输线上引起两类不同的噪声信号:容性耦合信号与感性耦合信号。容性耦合是由于干扰源(Aggressor)上的电压(Vs)变化在被干扰对象(Victim)上引起感应电流(i)通过互容Cm而导致的电磁干扰,而感性耦合则是由于干扰源上的电流(Is)变化产生的磁场在被干扰对象上引起感应电压(V)通过互感(Lm)而导致的电磁干扰。
串扰的几个重要特性分析
电流流向对串扰的影响
串扰是具有方向的,其波形是电流方向的函数,这里我们来看两种情况下的信号仿真。第一种情况是干扰源线网与被干扰对象线网的电流流向相同,第二种情况是干扰源线网与被干扰对象线网的电流流向相反(即位于B点的为驱动源,而位于A点的为负载)。AB和CD线网都加入20MHz的信号,表1给出了远端D点的串扰峰值。
由仿真结果可知,电流流向为反向时的远端串扰峰值(357.6mm)要大于电流流向为同向时的远端口串扰峰值(260.5)。当干扰源的电流流向改变后,被干扰源的串扰极性也改变了。这说明串扰的大小和极性与相应干扰源上信号的电流流向有关的。
远端D点串扰一般大于近端C点串扰,因此在串扰抑制中,D点的远端串扰通常被作为考察线网峰值串扰电压大小的重点考虑的因素。
文章引自深圳宏力捷电子
串扰信号产生的机理
串扰是指一个信号在传输通道上传输时,因电磁耦合而对相邻的传输线产生不期望的影响,在被干扰信号表现为被注入了一定的耦合电压和耦合电流。过大的串扰可能引起电路的误触发,导致系统无法正常工作。如图1的电路,AB之间的门电路称为干扰源网络(Aggressor Line),CD之间的门电路称为被干扰源网络(Victim Line)。只要干扰源一改变状态,我们就可以观察到受害源处的脉冲串扰。
信号在传输通道上传输对相邻的传输线上引起两类不同的噪声信号:容性耦合信号与感性耦合信号。容性耦合是由于干扰源(Aggressor)上的电压(Vs)变化在被干扰对象(Victim)上引起感应电流(i)通过互容Cm而导致的电磁干扰,而感性耦合则是由于干扰源上的电流(Is)变化产生的磁场在被干扰对象上引起感应电压(V)通过互感(Lm)而导致的电磁干扰。
串扰的几个重要特性分析
电流流向对串扰的影响
串扰是具有方向的,其波形是电流方向的函数,这里我们来看两种情况下的信号仿真。第一种情况是干扰源线网与被干扰对象线网的电流流向相同,第二种情况是干扰源线网与被干扰对象线网的电流流向相反(即位于B点的为驱动源,而位于A点的为负载)。AB和CD线网都加入20MHz的信号,表1给出了远端D点的串扰峰值。
由仿真结果可知,电流流向为反向时的远端串扰峰值(357.6mm)要大于电流流向为同向时的远端口串扰峰值(260.5)。当干扰源的电流流向改变后,被干扰源的串扰极性也改变了。这说明串扰的大小和极性与相应干扰源上信号的电流流向有关的。
远端D点串扰一般大于近端C点串扰,因此在串扰抑制中,D点的远端串扰通常被作为考察线网峰值串扰电压大小的重点考虑的因素。
文章引自深圳宏力捷电子
ZESTRON
2024-09-04 广告
2024-09-04 广告
电子失效分析是指对电子元件或系统进行系统调查,以确定失效原因。通过显微镜、光谱学和电气测试等技术,分析人员可以查明导致故障的缺陷或问题。此过程包括检查物理损坏、分析电气特性和进行环境测试以确定根本原因。电子故障分析在半导体制造、汽车电子和消...
点击进入详情页
本回答由ZESTRON提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询