1/(2+COSx)的积分是什么 5
展开全部
∫1/(2+cosx)dx=2/√3arctan[tan(x/2)/√3]+C。C为常数。
解答过程如下:
设t=tan(x/2)
则cosx=[cos²(x/2)-sin²(x/2)]/[cos²(x/2)+sin²(x/2)]
=[1-tan²(x/2)]/[1+tan²(x/2)]
=(1-t²)/(1+t²)
dx=d(2arctant)=2dt/(1+t²)
故∫1/(2+cosx)dx=∫1/[2+(1-t²)/(1+t²)]*[2dt/(1+t²)]
=∫2dt/(3+t²)
=2/√3∫d(t/√3)/[1+(t/√3)²]
=2/√3arctan(t/√3)+C
=2/√3arctan[tan(x/2)/√3]+C
解答过程如下:
设t=tan(x/2)
则cosx=[cos²(x/2)-sin²(x/2)]/[cos²(x/2)+sin²(x/2)]
=[1-tan²(x/2)]/[1+tan²(x/2)]
=(1-t²)/(1+t²)
dx=d(2arctant)=2dt/(1+t²)
故∫1/(2+cosx)dx=∫1/[2+(1-t²)/(1+t²)]*[2dt/(1+t²)]
=∫2dt/(3+t²)
=2/√3∫d(t/√3)/[1+(t/√3)²]
=2/√3arctan(t/√3)+C
=2/√3arctan[tan(x/2)/√3]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询