兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,
同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长...
同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.6米,则树高为
展开
4个回答
展开全部
可以先用比例尺的方法把0.2换算成地面的影子,然后加上树的4.6得出总影长,再利用比例尺的方法来算出树高就可以了。答案:11.7 m
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(4.6+0.2+0.3x0.4)÷0.4=12.3m
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考点:相似三角形的应用.
专题:应用题.
分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.据此可构造出相似三角形.
解答:解:根据题意可构造相似三角形模型如图,
其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;
延长FE交AB于G,则Rt△ABC∽Rt△AGF,
∴AG:GF=AB:BC=物高:影长=1:0.4
∴GF=0.4AG
又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,
∴GF=4.6
∴AG=11.5
∴AB=AG+GB=11.8,即树高为11.8米.
点评:本题考查了直角三角形的有关知识,同时渗透光学中光的传播原理,构造直角三角形是解决本题关键,属于中等题目.
专题:应用题.
分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.据此可构造出相似三角形.
解答:解:根据题意可构造相似三角形模型如图,
其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;
延长FE交AB于G,则Rt△ABC∽Rt△AGF,
∴AG:GF=AB:BC=物高:影长=1:0.4
∴GF=0.4AG
又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,
∴GF=4.6
∴AG=11.5
∴AB=AG+GB=11.8,即树高为11.8米.
点评:本题考查了直角三角形的有关知识,同时渗透光学中光的传播原理,构造直角三角形是解决本题关键,属于中等题目.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询