已知向量M(SinA ,CosA) . 向量N(1 ,
1个回答
展开全部
题没写完……
已知向量M=(sinA,cosA),向量N=(1,-2),且MN=0
(1)求 tanA的值
(2)求函数f(x)=cos2x+tanAsinx(x属于R)的值域
1.
m*n=sinA-2cosA=0
tanA=sinA/cosA=2
2.
f(x)=cos2x+tanAsinx
=cos2x+2sinx
=1-2(sinx)^2+2sinx
=(3/2)-2(sinx - 1/2)^2
-1<=sinx<=1
-3/2 <= sinx - 1/2 <= 1/2
0<= (sinx - 1/2)^2 <= 9/4
所以: (3/2)-2*(9/4)<=f(x)<=3/2
-3<=f(x)<=3/2
值域:[-3,3/2]
已知向量M=(sinA,cosA),向量N=(1,-2),且MN=0
(1)求 tanA的值
(2)求函数f(x)=cos2x+tanAsinx(x属于R)的值域
1.
m*n=sinA-2cosA=0
tanA=sinA/cosA=2
2.
f(x)=cos2x+tanAsinx
=cos2x+2sinx
=1-2(sinx)^2+2sinx
=(3/2)-2(sinx - 1/2)^2
-1<=sinx<=1
-3/2 <= sinx - 1/2 <= 1/2
0<= (sinx - 1/2)^2 <= 9/4
所以: (3/2)-2*(9/4)<=f(x)<=3/2
-3<=f(x)<=3/2
值域:[-3,3/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询