展开全部
还有1配方法,2十字相乘法
配方法过程
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.求解: 用直接开平方法求解 整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x
1. 2x^2-6x+4=0
2. x^2-3x+2=0
3. x^2-3x=-2
4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5. (x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)
6. x-1.5=±0.5
7. x1=2
x2=1 (一元二次方程通常有两个解,X1 X2)
十字相乘法
十字相乘法十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. . 上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) . 又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法
讲解: x^2-3x+2=如下: x -1 ╳ x -2 左边x乘x= x^2 右边-1乘-2=2 中间-1乘x+(-2)乘x(对角)=-3x 上边的【x+(-1)】乘下边的【x+(-2)】 就等于(x-1)*(x-2) x^2-3x+2=(x-1)*(x-2)
编辑本段通俗方法
方法
先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写 1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b 第四次a=2 b=2 c=二次项系数÷a d=常数项÷b 第五次a=2 b=3 c=二次项系数÷a d=常数项÷b 第六次a=3 b=2 c=二次项系数÷a d=常数项÷b 第七次a=3 b=3 c=二次项系数÷a d=常数项÷b ...... 依此类推 直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)
例
:(^2代表平方) a^2x^2+ax-42 首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?) 然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式。 再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2 首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者。 然后,在确定是-7×6还是7×-6. (a×+(-7))×(a×+6)=a^2-a-42(计算过程省略) 得到结果与原来结果不相符,原式+a 变成了-a 再算: (a×+7)×(a×+(-6))=a^2+a-42 正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
编辑本段例题解析
例1
把2x^2-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同! 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2-7x+3=(x-3)(2x-1) 一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax^2+bx+c=(a1x+c1)(a2x+c2). 像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2
把6x^2-7x-5分解因式. 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 ╳ 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是 1 -3 ╳ 1 5 1×5+1×(-3)=2 所以x+2x-15=(x-3)(x+5).
例3
把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 ╳ 5 -4 1×(-4)+5×2=6 解 5x+6xy-8y=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式.
例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解. 问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 1 -2 ╳ 2 1 1×1+2×(-2)=-3 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5
x^2+2x-15 分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5) 总结:①x+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax+b)(cx+d) a b ╳ c d 教学重点和难点 重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式分解因式; 难点:灵活运用十字相乘法分解因式.
编辑本段解决两者之间的比例问题
原理
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设总量为S, A所占的数量为M,B为S-M。 则:[A*M+B*(S-M)]/S=C A/S*M/S+B/S*(S-M)/S=C M/S=(C-B)/(A-B) 1-M/S=(A-C)/(A-B) 因此:M/S∶(1-M/S)=(C-B)∶(A-C) 上面的计算过程可以抽象为: A ………C-B ……C B……… A-C 这就是所谓的十字相乘法。X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。即比例,以十字相乘法形式展现更加清晰
使用时的注意事项
第一点:用来解决两者之间的比例问题。 第二点:得出的比例关系是基数的比例关系。 第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。
例题
某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年(2006)毕业的本科生有多少人? 十字相乘法 解:去年毕业生一共7500人,7650÷(1+2%)=7500人。 本科生:-2%………8% …………………2% 研究生:10%……… -4% 本科生∶研究生=8%∶(-4%)=-2∶1。 去年的本科生:7500×2/3=5000 今年的本科生:5000×0.98=4900 答:这所高校今年毕业的本科生有4900人。 鸡兔同笼问题 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 十字相乘法 解:假设全为鸡脚则有70只脚,假设全为兔脚则有140只脚 鸡:70……… …46 ……………………94 兔:140……… …24 鸡:兔=46:24=23:12 答:鸡有23只,兔有12只。
编辑本段十字相乘法解一元二次方程
例1
把2x^2-7x+3分解因式. 分析:先 分解二次项系数, 分别写在十字交叉线的左上角和左下角, 再分解常数项, 分别写在十字交叉线的右上角和右下角, 然后交叉相乘, 求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1=5 1 3 ╳ 2 1 1×1+2×3=7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2-7x+3=(x-3)(2x-1). 一般地,对于二次三项式ax^2+bx+c(a≠0), 如果二次项系数a可以分解成两个因数之积, 即a=a1a2, 常数项c可以分解成两个因数之积, 即c=c1c2,把a1,a2,c1,c2, 排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1, 若它正好等于二次三项式ax2+bx+c的一次项系数b, 即a1c2+a2c1=b, 那么二次三项式就⒂可以分解为两个因式a1x+c1与a2x+c2之积, 即 ax2+bx+c=(a1x+c1)(a2x+c2).
例2
把6x^2-7x-5分解因式. 分析:按照例1的方法, 分解二次项系数6及常数项-5, 把它们分别排列, 可有8种不同的排列方法, 其中的一种 21╳3-5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x^2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到, 运用十字相乘法把一个二次项系数不是1的二次三项式因式分解, 往往要经过多次观察, 才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式, 也可以用十字相乘法分解因式, 这时只需考虑如何把常数项分解因数. 例如把x^2+2x-15分解因式, 十字相乘法是1-3╳ 15 1×5+1×(-3)=2 所以x^2+2x-15=(x-3)(x+5).
例3
把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式, 把-8y^2看作常数项, 在分解二次项及常数项系数时, 只需分解5与-8,用十字交叉线分解后, 经过观察,选取合适的一组, 即 12╳ 5-4 1×(-4)+5×2=6 解 5x^2+6xy-8y^2=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式.
例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式, 只有先进行多项式的乘法运算, 把变形后的多项式再因式分解. 问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 1-2╳ 21 1×1+2×(-2)=-3 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 指出:把(x-y)看作一个整体进行因式分解, 这又是运用了数学中的“整体”思想方法.例5x^2+2x-15 分析:常数项(-15)<0,可分解成异号两数的积, 可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5), 其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5) 总结:①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1; 常数项是两个数的积;一次项系数是常数项的两个因数的和. 因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时, 那么 kx^2+mx+n=(ax+b)(cx+d) a b╳c d (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0 (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0 (1)解:(x+3)(x-6)=-8 化简整理得 x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x^2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-3/2是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x^2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=5/2,x2=-10/3 是原方程的解。 (4)解:x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2,x2=2是原方程的解。 例题x^2-x-2=0 解:(x+1)(x-2)=0 ∴x+1=0或x-2=0 ∴x1=-1,x2=2 (附:^是数学符号)
配方法过程
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.求解: 用直接开平方法求解 整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x
1. 2x^2-6x+4=0
2. x^2-3x+2=0
3. x^2-3x=-2
4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5. (x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)
6. x-1.5=±0.5
7. x1=2
x2=1 (一元二次方程通常有两个解,X1 X2)
十字相乘法
十字相乘法十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. . 上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) . 又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法
讲解: x^2-3x+2=如下: x -1 ╳ x -2 左边x乘x= x^2 右边-1乘-2=2 中间-1乘x+(-2)乘x(对角)=-3x 上边的【x+(-1)】乘下边的【x+(-2)】 就等于(x-1)*(x-2) x^2-3x+2=(x-1)*(x-2)
编辑本段通俗方法
方法
先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写 1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b 第四次a=2 b=2 c=二次项系数÷a d=常数项÷b 第五次a=2 b=3 c=二次项系数÷a d=常数项÷b 第六次a=3 b=2 c=二次项系数÷a d=常数项÷b 第七次a=3 b=3 c=二次项系数÷a d=常数项÷b ...... 依此类推 直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)
例
:(^2代表平方) a^2x^2+ax-42 首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?) 然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式。 再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2 首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者。 然后,在确定是-7×6还是7×-6. (a×+(-7))×(a×+6)=a^2-a-42(计算过程省略) 得到结果与原来结果不相符,原式+a 变成了-a 再算: (a×+7)×(a×+(-6))=a^2+a-42 正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
编辑本段例题解析
例1
把2x^2-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同! 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2-7x+3=(x-3)(2x-1) 一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax^2+bx+c=(a1x+c1)(a2x+c2). 像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2
把6x^2-7x-5分解因式. 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 ╳ 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是 1 -3 ╳ 1 5 1×5+1×(-3)=2 所以x+2x-15=(x-3)(x+5).
例3
把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 ╳ 5 -4 1×(-4)+5×2=6 解 5x+6xy-8y=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式.
例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解. 问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 1 -2 ╳ 2 1 1×1+2×(-2)=-3 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5
x^2+2x-15 分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5) 总结:①x+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax+b)(cx+d) a b ╳ c d 教学重点和难点 重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式分解因式; 难点:灵活运用十字相乘法分解因式.
编辑本段解决两者之间的比例问题
原理
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设总量为S, A所占的数量为M,B为S-M。 则:[A*M+B*(S-M)]/S=C A/S*M/S+B/S*(S-M)/S=C M/S=(C-B)/(A-B) 1-M/S=(A-C)/(A-B) 因此:M/S∶(1-M/S)=(C-B)∶(A-C) 上面的计算过程可以抽象为: A ………C-B ……C B……… A-C 这就是所谓的十字相乘法。X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。即比例,以十字相乘法形式展现更加清晰
使用时的注意事项
第一点:用来解决两者之间的比例问题。 第二点:得出的比例关系是基数的比例关系。 第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。
例题
某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年(2006)毕业的本科生有多少人? 十字相乘法 解:去年毕业生一共7500人,7650÷(1+2%)=7500人。 本科生:-2%………8% …………………2% 研究生:10%……… -4% 本科生∶研究生=8%∶(-4%)=-2∶1。 去年的本科生:7500×2/3=5000 今年的本科生:5000×0.98=4900 答:这所高校今年毕业的本科生有4900人。 鸡兔同笼问题 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 十字相乘法 解:假设全为鸡脚则有70只脚,假设全为兔脚则有140只脚 鸡:70……… …46 ……………………94 兔:140……… …24 鸡:兔=46:24=23:12 答:鸡有23只,兔有12只。
编辑本段十字相乘法解一元二次方程
例1
把2x^2-7x+3分解因式. 分析:先 分解二次项系数, 分别写在十字交叉线的左上角和左下角, 再分解常数项, 分别写在十字交叉线的右上角和右下角, 然后交叉相乘, 求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1=5 1 3 ╳ 2 1 1×1+2×3=7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2-7x+3=(x-3)(2x-1). 一般地,对于二次三项式ax^2+bx+c(a≠0), 如果二次项系数a可以分解成两个因数之积, 即a=a1a2, 常数项c可以分解成两个因数之积, 即c=c1c2,把a1,a2,c1,c2, 排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1, 若它正好等于二次三项式ax2+bx+c的一次项系数b, 即a1c2+a2c1=b, 那么二次三项式就⒂可以分解为两个因式a1x+c1与a2x+c2之积, 即 ax2+bx+c=(a1x+c1)(a2x+c2).
例2
把6x^2-7x-5分解因式. 分析:按照例1的方法, 分解二次项系数6及常数项-5, 把它们分别排列, 可有8种不同的排列方法, 其中的一种 21╳3-5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x^2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到, 运用十字相乘法把一个二次项系数不是1的二次三项式因式分解, 往往要经过多次观察, 才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式, 也可以用十字相乘法分解因式, 这时只需考虑如何把常数项分解因数. 例如把x^2+2x-15分解因式, 十字相乘法是1-3╳ 15 1×5+1×(-3)=2 所以x^2+2x-15=(x-3)(x+5).
例3
把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式, 把-8y^2看作常数项, 在分解二次项及常数项系数时, 只需分解5与-8,用十字交叉线分解后, 经过观察,选取合适的一组, 即 12╳ 5-4 1×(-4)+5×2=6 解 5x^2+6xy-8y^2=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式.
例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式, 只有先进行多项式的乘法运算, 把变形后的多项式再因式分解. 问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 1-2╳ 21 1×1+2×(-2)=-3 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 指出:把(x-y)看作一个整体进行因式分解, 这又是运用了数学中的“整体”思想方法.例5x^2+2x-15 分析:常数项(-15)<0,可分解成异号两数的积, 可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5), 其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5) 总结:①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1; 常数项是两个数的积;一次项系数是常数项的两个因数的和. 因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时, 那么 kx^2+mx+n=(ax+b)(cx+d) a b╳c d (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0 (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0 (1)解:(x+3)(x-6)=-8 化简整理得 x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x^2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-3/2是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x^2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=5/2,x2=-10/3 是原方程的解。 (4)解:x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2,x2=2是原方程的解。 例题x^2-x-2=0 解:(x+1)(x-2)=0 ∴x+1=0或x-2=0 ∴x1=-1,x2=2 (附:^是数学符号)
参考资料: baidu
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询