求解一道高中数学解析几何的数学题。很急!但我没财富值了。
设A,B是椭圆3x²+y²=λ上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C,D两点。试判断是否存在这样的λ,使得A,B...
设A,B是椭圆3x²+y²=λ上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C,D两点。试判断是否存在这样的λ,使得A,B,C,D四点在一圆上?说明理由。
展开
展开全部
整个过程太繁琐了。而且打字也不方便,我就大致说下思路,你顺着思路走,是可以做出来的。
首先,这题目涉及到ABCD四个点,而只有一个N是已知的定点,那么怎么设未知数就比较麻烦了。 先看比较多条件的AB两点,设成(x1,y1);(x2,y2)那么就有x1+x2=2。这时候就发现如果设AB的斜率为k,那么CD的斜率就知道是-1/k。而且AB的方程就是y=k(x-1)+3,代入椭圆方程就得到一个x的2次方程,根据韦达定理,x1+x2=2k(k-3)/(k²+3)=2 。解出来k=-1。这下就豁然开朗了。这题AB,CD这两条直线的方程直接求出来了。
题目变成椭圆3x²+y²=λ与直线y=-x+4的两个交点AB,与直线y=x+2的两个交点CD四点共圆。实际上。只要AC与AD垂直就等价了,这是平面几何的简单知识。自己可以去推下。这下就只要代入就OK了。。就是(x3-x1)(x4-x1)+(y3-y1)(y4-y1)=0计算自己去做
首先,这题目涉及到ABCD四个点,而只有一个N是已知的定点,那么怎么设未知数就比较麻烦了。 先看比较多条件的AB两点,设成(x1,y1);(x2,y2)那么就有x1+x2=2。这时候就发现如果设AB的斜率为k,那么CD的斜率就知道是-1/k。而且AB的方程就是y=k(x-1)+3,代入椭圆方程就得到一个x的2次方程,根据韦达定理,x1+x2=2k(k-3)/(k²+3)=2 。解出来k=-1。这下就豁然开朗了。这题AB,CD这两条直线的方程直接求出来了。
题目变成椭圆3x²+y²=λ与直线y=-x+4的两个交点AB,与直线y=x+2的两个交点CD四点共圆。实际上。只要AC与AD垂直就等价了,这是平面几何的简单知识。自己可以去推下。这下就只要代入就OK了。。就是(x3-x1)(x4-x1)+(y3-y1)(y4-y1)=0计算自己去做
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询