在平面直角坐标系XOY中,二次函数y=mx2+(m-3)x-3(m>0)的图像与x轴交于A。B两点(点A在点B左侧)与Y轴交于C 10
(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y的kx+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P垂直于X轴的直线交这个...
(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y的kx+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P垂直于X轴的直线交这个一次函数的图像于点M,交二次函数y=mx平方+(m-3)x-3(m>0)的图像于点N,若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的
展开
4个回答
展开全部
解:(1)∵点A、B是二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴的交点,
∴令y=0,即mx2+(m-3)x-3=0
解得x1=-1, x2=3m
又∵点A在点B左侧且m>0
∴点A的坐标为(-1,0)
(2)由(1)可知点B的坐标为 (3m,0)
∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴ 3m=3
∴m=1
(3)由(2)得,二次函数解析式为y=x2-2x-3
依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),将交点坐标分别代入一次函数解析式y=kx+b中,
得 {-2k+b=52,k+b=-3解得: {k=-2b=1∴一次函数解析式为y=-2x+1
∴令y=0,即mx2+(m-3)x-3=0
解得x1=-1, x2=3m
又∵点A在点B左侧且m>0
∴点A的坐标为(-1,0)
(2)由(1)可知点B的坐标为 (3m,0)
∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴ 3m=3
∴m=1
(3)由(2)得,二次函数解析式为y=x2-2x-3
依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),将交点坐标分别代入一次函数解析式y=kx+b中,
得 {-2k+b=52,k+b=-3解得: {k=-2b=1∴一次函数解析式为y=-2x+1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:(1)∵点A、B是二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴的交点,
∴令y=0,即mx2+(m-3)x-3=0
解得x1=-1, x2=3m
又∵点A在点B左侧且m>0
∴点A的坐标为(-1,0)
(2)由(1)可知点B的坐标为 (3m,0)
∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴ 3m=3
∴m=1
(3)由(2)得,二次函数解析式为y=x2-2x-3
依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),将交点坐标分别代入一次函数解析式y=kx+b中,
得 {-2k+b=52,k+b=-3解得: {k=-2b=1∴一次函数解析式为y=-2x+1
∴令y=0,即mx2+(m-3)x-3=0
解得x1=-1, x2=3m
又∵点A在点B左侧且m>0
∴点A的坐标为(-1,0)
(2)由(1)可知点B的坐标为 (3m,0)
∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴ 3m=3
∴m=1
(3)由(2)得,二次函数解析式为y=x2-2x-3
依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),将交点坐标分别代入一次函数解析式y=kx+b中,
得 {-2k+b=52,k+b=-3解得: {k=-2b=1∴一次函数解析式为y=-2x+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)∵点A、B是二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴的交点,
∴令y=0,即mx2+(m-3)x-3=0
解得x1=-1, x2=3m
又∵点A在点B左侧且m>0
∴点A的坐标为(-1,0)
(2)由(1)可知点B的坐标为 (3m,0)
∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴ 3m=3
∴m=1
(3)由(2)得,二次函数解析式为y=x2-2x-3
依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),将交点坐标分别代入一次函数解析式y=kx+b中,
得 {-2k+b=52,k+b=-3解得: {k=-2b=1∴一次函数解析式为y=-2x+1
∴令y=0,即mx2+(m-3)x-3=0
解得x1=-1, x2=3m
又∵点A在点B左侧且m>0
∴点A的坐标为(-1,0)
(2)由(1)可知点B的坐标为 (3m,0)
∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴ 3m=3
∴m=1
(3)由(2)得,二次函数解析式为y=x2-2x-3
依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),将交点坐标分别代入一次函数解析式y=kx+b中,
得 {-2k+b=52,k+b=-3解得: {k=-2b=1∴一次函数解析式为y=-2x+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
LS正解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询