计算下列二重积分:∫∫D(x^2-y^2)dxdy,其中D:0≤y≤sinx,0≤x≤π
2个回答
展开全部
∫∫(x^2-y^2)dσ
=∫∫(x^2-y^2)dxdy
=∫[0,π]dx∫[0,sinx](x^2-y^2)dy
=∫[0,π]dx*(y*x^2-y^3/3)|[0,sinx]
=∫[0,π][x^2*sinx-(sinx)^3/3]dx
=∫[0,π]x^2*sinx*dx-1/3*∫[0,π](sinx)^3*dx
=(-x^2*cosx+2xsinx+2cosx)|[0,π]-2/3*∫[0,π/2](sinx)^3*dx
=(π^2-2)-2-2/3*2/3
=π^2-4-4/9
=π^2-40/9
=∫∫(x^2-y^2)dxdy
=∫[0,π]dx∫[0,sinx](x^2-y^2)dy
=∫[0,π]dx*(y*x^2-y^3/3)|[0,sinx]
=∫[0,π][x^2*sinx-(sinx)^3/3]dx
=∫[0,π]x^2*sinx*dx-1/3*∫[0,π](sinx)^3*dx
=(-x^2*cosx+2xsinx+2cosx)|[0,π]-2/3*∫[0,π/2](sinx)^3*dx
=(π^2-2)-2-2/3*2/3
=π^2-4-4/9
=π^2-40/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询