已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,求证:△DBE∽△ABC

xtttwind
2012-04-09 · TA获得超过1199个赞
知道小有建树答主
回答量:186
采纳率:0%
帮助的人:240万
展开全部
∠CBE=∠ABD,∠BCE=∠BAD,则△ABD∽△CBE
故有AB/CB=BD/BE
即AB/BD=CB/BE
又有∠ABC=∠ABD+∠DBC=∠DBC+∠CBE=∠DBE
根据两边对应成比例且夹角相等,则有△DBE∽△ABC
大哥爱好多了
2012-04-09 · TA获得超过8186个赞
知道小有建树答主
回答量:1598
采纳率:0%
帮助的人:857万
展开全部
如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,
∴:△CBE∽△ABD∴AB:BC=BD:BE∴AB:BD=BC:BE,∵∠DBE=∠CBE+∠CBD=∠ABD+∠CBD∠ABC∴△DBE∽△ABC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式