极限求解答,需要过程,谢谢
1个回答
展开全部
(x->1) lim (x³-3x²+2)/(x³-x²-x+1)
=(x->1) lim [(x-1)x²-2(x²-1)]/[(x²(x-1)-(x-1)]
=(x->1) lim (x-1)(x²-2x-2)/[(x-1)(x²-1)]
=(x->1) lim [(x-1)²-3)]/[(x-1)(x+1)]
=(x->1) lim (x-1)/(x+1)-3/[(x-1)(x+1)]
=0 - (x->1) lim 3/[(x-1)(x+1)]
分母是无穷小量,分式是无穷大量,原式无极限
=(x->1) lim [(x-1)x²-2(x²-1)]/[(x²(x-1)-(x-1)]
=(x->1) lim (x-1)(x²-2x-2)/[(x-1)(x²-1)]
=(x->1) lim [(x-1)²-3)]/[(x-1)(x+1)]
=(x->1) lim (x-1)/(x+1)-3/[(x-1)(x+1)]
=0 - (x->1) lim 3/[(x-1)(x+1)]
分母是无穷小量,分式是无穷大量,原式无极限
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询