已知函数f(x)=e^x-ax-1(a>0..e为自然对数的底数).难题求解啊
已知函数f(x)=e^x-ax-1(a>0..e为自然对数的底数)(1)求函数fx的最小值。(2)若fx大于等于0对任意的x属于R恒成立。求实数a的值。(3)在(2)的条...
已知函数f(x)=e^x-ax-1(a>0..e为自然对数的底数)(1)求函数fx的最小值。(2)若fx大于等于0对任意的x属于R恒成立。求实数a的值。(3)在(2)的条件下,证明(1/n)^n+(2/n)^n+……+((n-1)/n)^n+(n/n)^n<e/(e-1)
前两题简单,主要是第三题求解啊! 展开
前两题简单,主要是第三题求解啊! 展开
4个回答
展开全部
(1)、(2)略
(1) f'(x)=e^x-a,x=㏑a取最小值,f(a)=a-a㏑a-1。
2) 欲使f(a)≥0,f'(a)=-㏑a,所以f(a)在a=1处取最大值0,故a只能取1。
解:
(3) 当a=1时,f(x)=e^x-x-1。由(2)知,对于任意x∈R,f(x)≥0,令x=t-1,∴f(t-1)=e^(t-1)-(t-1)-1=e^(t-1)-t≥0。∴t≤e^(t-1)。令t=k/n,∴k/n≤e^(k/n-1),两边n次方,有(k/n)^n≤e^(k-n)。∴∑(k/n)^n≤∑e^(k-n)≤e/(e-1),等比数列求和。
(1) f'(x)=e^x-a,x=㏑a取最小值,f(a)=a-a㏑a-1。
2) 欲使f(a)≥0,f'(a)=-㏑a,所以f(a)在a=1处取最大值0,故a只能取1。
解:
(3) 当a=1时,f(x)=e^x-x-1。由(2)知,对于任意x∈R,f(x)≥0,令x=t-1,∴f(t-1)=e^(t-1)-(t-1)-1=e^(t-1)-t≥0。∴t≤e^(t-1)。令t=k/n,∴k/n≤e^(k/n-1),两边n次方,有(k/n)^n≤e^(k-n)。∴∑(k/n)^n≤∑e^(k-n)≤e/(e-1),等比数列求和。
参考资料: http://tieba.baidu.com/p/1503364140
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
(1)、y=e^x-ax-1
y`=e^x-a
所以当e^x=a,即x=lna时原函数取最小值y(min)=a-alna-1
(2)因为对于任意x,y>=0,所以y(min)>=0 即 a-alna-1>=0
y`=e^x-a
所以当e^x=a,即x=lna时原函数取最小值y(min)=a-alna-1
(2)因为对于任意x,y>=0,所以y(min)>=0 即 a-alna-1>=0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-04-09
展开全部
1、
f'(x)=e^x-a=0得
x=lna
x>lna单调增
x<lna单调减
f(x)min=f(lna)=a-alna-1
2、要使f(x)≥0恒成立,就只需f(x)min=a-alna-1≥0成立即可
而g(a)=a-alna-1
在(0,1)单调增,(1,正无穷)单调减
所以g(a)≤g(1)=0
因此要满足(x)min=a-alna-1≥0成立
a只能为1
3、不会
f'(x)=e^x-a=0得
x=lna
x>lna单调增
x<lna单调减
f(x)min=f(lna)=a-alna-1
2、要使f(x)≥0恒成立,就只需f(x)min=a-alna-1≥0成立即可
而g(a)=a-alna-1
在(0,1)单调增,(1,正无穷)单调减
所以g(a)≤g(1)=0
因此要满足(x)min=a-alna-1≥0成立
a只能为1
3、不会
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令 l(x)=e^x; g(x)=ax+1; 两函数均过点(0,1),
(1)画图可知x=0时,f(x)的最小值为f(0)=0;
(2)g(x)相切于l(x)时成立,得出x;
(1)画图可知x=0时,f(x)的最小值为f(0)=0;
(2)g(x)相切于l(x)时成立,得出x;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询