高中几何数学题
在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3(1)求证AB1平行平面BC1D(2)求四棱锥B-AA1...
在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3
(1)求证AB1平行平面BC1D
(2)求四棱锥B-AA1C1D的体积 展开
(1)求证AB1平行平面BC1D
(2)求四棱锥B-AA1C1D的体积 展开
7个回答
2012-04-09 · 知道合伙人教育行家
关注
展开全部
1、连接B1C,交BC1于O,连接DO
因为三棱柱ABC-A1B1C1中侧棱AA1垂直底面ABC,AA1//BB1
即BB1垂直底面ABC
所以BB1垂直于BC,即四边形BB1C1C是矩形
则CO=B1O
又AB垂直BC,D为AC的中点
则CD=DA
所以在三角形AB1C中,DO//AB1
又DO在面BC1D内
则AB1平行平面BC1D
2、过B做BH垂直于AC,交AC于H
AB垂直BC
则AC=根号(2^2+3^2)=根号13,AD=1/2AC=1/2*根号13
因为侧棱AA1垂直底面ABC,则AA1垂直BH
则BH垂直于面AA1C1C
而面AA1C1D在面AA1C1C内
所以BH垂直于面AA1C1D,即BH是四棱锥B-AA1C1D的高
又BH=AB*BC/AC=6/根号13
底面积AA1C1D面积S=(AD+A1C1)*AA1/2=3/2*根号13
则四棱锥B-AA1C1D的体积V=1/3*S*BH=3
因为三棱柱ABC-A1B1C1中侧棱AA1垂直底面ABC,AA1//BB1
即BB1垂直底面ABC
所以BB1垂直于BC,即四边形BB1C1C是矩形
则CO=B1O
又AB垂直BC,D为AC的中点
则CD=DA
所以在三角形AB1C中,DO//AB1
又DO在面BC1D内
则AB1平行平面BC1D
2、过B做BH垂直于AC,交AC于H
AB垂直BC
则AC=根号(2^2+3^2)=根号13,AD=1/2AC=1/2*根号13
因为侧棱AA1垂直底面ABC,则AA1垂直BH
则BH垂直于面AA1C1C
而面AA1C1D在面AA1C1C内
所以BH垂直于面AA1C1D,即BH是四棱锥B-AA1C1D的高
又BH=AB*BC/AC=6/根号13
底面积AA1C1D面积S=(AD+A1C1)*AA1/2=3/2*根号13
则四棱锥B-AA1C1D的体积V=1/3*S*BH=3
展开全部
1、连接B1C交BC1与o点
连接DO,
因为BCC1B1是平行四边形,所以O是B1C的中点,
又因为D是AC的中点,所以在△ACB1中,DO∥AB1
又因为DO在△BC1D中,
所以AB1∥平面BC1D,即证毕。
2、三棱柱ABC-A1B1C1的体积是V1=1/2AB*BC*AA1=1/2*2*3*2=6
三棱锥B-A1B1C1的体积是V2=1/3*1/2*A1B1*B1C1*BB1=1/3*1/2*2*3*2=2
所以所求四棱锥B-AA1C1D的体积V=V1-V2=6-2=4
连接DO,
因为BCC1B1是平行四边形,所以O是B1C的中点,
又因为D是AC的中点,所以在△ACB1中,DO∥AB1
又因为DO在△BC1D中,
所以AB1∥平面BC1D,即证毕。
2、三棱柱ABC-A1B1C1的体积是V1=1/2AB*BC*AA1=1/2*2*3*2=6
三棱锥B-A1B1C1的体积是V2=1/3*1/2*A1B1*B1C1*BB1=1/3*1/2*2*3*2=2
所以所求四棱锥B-AA1C1D的体积V=V1-V2=6-2=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接b1c交于O点,连接do,do为三角形的中位线,和底边平行。命题一得证。
第二题 先算出四 棱 锥的高bd=6/√13.
再算出四棱锥底面面积并乘高和1/3得到体积
( √13.+√13/2)*2*1/2*6/√13*1/3=3
. 望采纳。。。。。。。。。
第二题 先算出四 棱 锥的高bd=6/√13.
再算出四棱锥底面面积并乘高和1/3得到体积
( √13.+√13/2)*2*1/2*6/√13*1/3=3
. 望采纳。。。。。。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:连接B1C,交BC1于O,连接OD,则OB为1C中点,
又在三角形AB1C中,D为AC的中点,故OD为中位线
OD平行AB1 从而AB1平行平面BC1D
解:过B做BE垂直AD于E,由于侧棱AA1垂直底面ABC,则AA1垂直BE
所以BE垂直平面AA1C1D,AA1C1D的面积=(A1C1+AD)*AA1/2
四棱锥B-AA1C1D的体积=AA1C1D的面积*BE/3=(A1C1+AD)*AA1*BE/6
在三角形ABC中,AB垂直BC,BE垂直AD,AA1=AB=2,BC=3,且A1C1=AC=2AD,得
AC=根号13,BE=6/根号13 四棱锥B-AA1C1D的体积=3
又在三角形AB1C中,D为AC的中点,故OD为中位线
OD平行AB1 从而AB1平行平面BC1D
解:过B做BE垂直AD于E,由于侧棱AA1垂直底面ABC,则AA1垂直BE
所以BE垂直平面AA1C1D,AA1C1D的面积=(A1C1+AD)*AA1/2
四棱锥B-AA1C1D的体积=AA1C1D的面积*BE/3=(A1C1+AD)*AA1*BE/6
在三角形ABC中,AB垂直BC,BE垂直AD,AA1=AB=2,BC=3,且A1C1=AC=2AD,得
AC=根号13,BE=6/根号13 四棱锥B-AA1C1D的体积=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1:连接B1C,交BC1于E点,连接DE,容易得到,B1C=AC,且E为B1C的中点,所以A1A平行DE,得证结论。
2:先求B到AC的距离,可知就是所求四棱锥的高,再求AA1C1D的面积=AA1C1C-三角形CC1D。后面用四棱锥体积公式即可。
2:先求B到AC的距离,可知就是所求四棱锥的高,再求AA1C1D的面积=AA1C1C-三角形CC1D。后面用四棱锥体积公式即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-04-09
展开全部
取A1C1中点E,连AE,B1E
因为A1ACC1为矩形,则AE∥C1D,
连D1E,则有BE∥BD,
∴平面AEB1∥平面BDC1
∴AB1平行平面BC1D
AB垂直BC,AA1=AB=2,BC=3
则AC=√13
AA1C1D面积为
SAA1ED+SEDC1=2*√13*(1-1/4)=3√13/2
在△ABC中,AC边上的高为
2*3/√13=6√13/13
∴四棱锥B-AA1C1D的体积为
3√13/2*6√13/13*1/3=3
因为A1ACC1为矩形,则AE∥C1D,
连D1E,则有BE∥BD,
∴平面AEB1∥平面BDC1
∴AB1平行平面BC1D
AB垂直BC,AA1=AB=2,BC=3
则AC=√13
AA1C1D面积为
SAA1ED+SEDC1=2*√13*(1-1/4)=3√13/2
在△ABC中,AC边上的高为
2*3/√13=6√13/13
∴四棱锥B-AA1C1D的体积为
3√13/2*6√13/13*1/3=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询