∫1/x+√(1-x^2)dx
3个回答
展开全部
我想你的题应该是∫1/(x+√(1-x²))dx吧?
令x=sinu,√(1-x²)=cosu,dx=cosudu
∫1/(x+√(1-x²))dx
=∫1/(sinu+cosu)*(cosu)du
=∫cosu/(sinu+cosu)du
=1/2∫(cosu+sinu+cosu-sinu)/(sinu+cosu)du
=1/2∫(cosu+sinu)/(sinu+cosu)du+1/2∫(cosu-sinu)/(sinu+cosu)du
=1/2∫1du+1/2∫1/(sinu+cosu)d(sinu+cosu)
=(1/2)u+(1/2)ln|sinu+cosu|+C
=(1/2)arcsinx+(1/2)ln|x+√(1-x²)|+C
令x=sinu,√(1-x²)=cosu,dx=cosudu
∫1/(x+√(1-x²))dx
=∫1/(sinu+cosu)*(cosu)du
=∫cosu/(sinu+cosu)du
=1/2∫(cosu+sinu+cosu-sinu)/(sinu+cosu)du
=1/2∫(cosu+sinu)/(sinu+cosu)du+1/2∫(cosu-sinu)/(sinu+cosu)du
=1/2∫1du+1/2∫1/(sinu+cosu)d(sinu+cosu)
=(1/2)u+(1/2)ln|sinu+cosu|+C
=(1/2)arcsinx+(1/2)ln|x+√(1-x²)|+C
leipole
2024-11-29 广告
2024-11-29 广告
JMBKKB2.5-PV是我司精心研发的一款高性能电气连接件,专为光伏系统及其他低压电气应用设计。该产品采用优质材料制造,额定电流达2.5A,具备优异的耐候性和电气稳定性,确保在户外及恶劣环境下长期可靠运行。其紧凑的结构设计便于安装与维护,...
点击进入详情页
本回答由leipole提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询