3个回答
展开全部
a=1/(1-√2)
=(1+√2)/[(1-√2)(1+√2)]
=-(1+√2)
b=1/(1+√2)
=(√2-1)/[(√2-1)(1+√2)]
=√2-1
b-1=√2-1-1=√2-2<0
a^3b+ab^3
=ab(a^2+b^2)
=ab(a^2+b^2+2ab-2ab)
=ab[(a+b)^2-2ab]
=-(1+√2)(√2-1){[-(1+√2)+(√2-1)]^2-2*[-(1+√2)(√2-1)]}
=-{[-1-√2+√2-1]^2-2*[-1]}
=-{[-2]^2+2}
=-{4+2}
=-6
√(b^2-2b+1)/(b^2-b)
=√(b-1)^2/(b^2-b)
=(1-b)/[b(b-1)]
=-(b-1)/[b(b-1)]
=-1/b
=-1/[1/(1+√2)]
=-(1+√2)
=-1-√2
=(1+√2)/[(1-√2)(1+√2)]
=-(1+√2)
b=1/(1+√2)
=(√2-1)/[(√2-1)(1+√2)]
=√2-1
b-1=√2-1-1=√2-2<0
a^3b+ab^3
=ab(a^2+b^2)
=ab(a^2+b^2+2ab-2ab)
=ab[(a+b)^2-2ab]
=-(1+√2)(√2-1){[-(1+√2)+(√2-1)]^2-2*[-(1+√2)(√2-1)]}
=-{[-1-√2+√2-1]^2-2*[-1]}
=-{[-2]^2+2}
=-{4+2}
=-6
√(b^2-2b+1)/(b^2-b)
=√(b-1)^2/(b^2-b)
=(1-b)/[b(b-1)]
=-(b-1)/[b(b-1)]
=-1/b
=-1/[1/(1+√2)]
=-(1+√2)
=-1-√2
展开全部
a=1/1-√2=-1-√2 , b=1/1+√2=√2-1
∴a+b=-2 ab=-1
a3b+ab3=ab(a²+b²)=ab[(a+b)²-2ab]=-6
√(b2-2b+1)/(b2-b)=(1-b)/[b(b-1)]=-1/b=-1-√2
∴a+b=-2 ab=-1
a3b+ab3=ab(a²+b²)=ab[(a+b)²-2ab]=-6
√(b2-2b+1)/(b2-b)=(1-b)/[b(b-1)]=-1/b=-1-√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
ab=-1,a+b=-2
a3b+ab3=ab(a2+b2)
=ab[(a+b)2-2ab]
=-1[4-2(-1)]
=-6
√b2-2b+1/b2-b=1-b/b(b-1)=-1/b=-1-√2
a3b+ab3=ab(a2+b2)
=ab[(a+b)2-2ab]
=-1[4-2(-1)]
=-6
√b2-2b+1/b2-b=1-b/b(b-1)=-1/b=-1-√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询