如图,已知AB=10,点C、D在线段AB上且AC=DB=2,P是线段CD上的动点,分别以AB、PB为边
如图,已知AB=10,点C、D在线段AB上且AC=DB=2,P是线段CD上的动点,分别以AB、PB为边在线段AB的同侧作正方形AEMP和正方形PFNB,连接EF,设EF的...
如图,已知AB=10,点C、D在线段AB上且AC=DB=2,P是线段CD上的动点,分别以AB、PB为边在线段AB的同侧作正方形AEMP和正方形PFNB,连接EF,设EF的中点为G,当点P从点C运动到点D时,点G移动路径的长是( )
展开
5个回答
展开全部
分析:分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.
解:分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
点评:本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.
求采纳,谢谢:)
解:分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
点评:本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.
求采纳,谢谢:)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH‖PF,
∵∠B=∠EPA=60°,
∴BH‖PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
∵∠A=∠FPB=60°,
∴AH‖PF,
∵∠B=∠EPA=60°,
∴BH‖PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如图,分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH‖PF,
∵∠B=∠EPA=60°,
∴BH‖PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
查看大图
∵∠A=∠FPB=60°,
∴AH‖PF,
∵∠B=∠EPA=60°,
∴BH‖PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
查看大图
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询