√sin²500°+sin²770°-cos²(1620-x) 180°<x<270°
2个回答
展开全部
解:
∵180°<x<270°
∴sinx<0
则:
√[sin²(500°)+sin²(770°)-cos²(1620°-x)]
=√[sin²(360°+140°)+sin²(720°+50°)-cos²(1440°+180°-x)]
=√[sin²(360°+140°)+sin²(2×360°+50°)-cos²(4×360°+180°-x)]
=√[sin²(140°)+sin²(50°)-cos²(180°-x)]
=√[sin²(180°-40°)+sin²(50°)-cos²(x)]
=√[sin²(40°)+sin²(90°-40°)-cos²(x)]
=√[sin²(40°)+cos²(40°)-cos²(x)]
=√[1-cos²(x)]
=√[1-(cosx)²]
=√[(sinx)²]
=|sinx| ..............(180°<x<270°,sinx<0)
=-sinx
∵180°<x<270°
∴sinx<0
则:
√[sin²(500°)+sin²(770°)-cos²(1620°-x)]
=√[sin²(360°+140°)+sin²(720°+50°)-cos²(1440°+180°-x)]
=√[sin²(360°+140°)+sin²(2×360°+50°)-cos²(4×360°+180°-x)]
=√[sin²(140°)+sin²(50°)-cos²(180°-x)]
=√[sin²(180°-40°)+sin²(50°)-cos²(x)]
=√[sin²(40°)+sin²(90°-40°)-cos²(x)]
=√[sin²(40°)+cos²(40°)-cos²(x)]
=√[1-cos²(x)]
=√[1-(cosx)²]
=√[(sinx)²]
=|sinx| ..............(180°<x<270°,sinx<0)
=-sinx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
√sin²500°+sin²770°-cos²(1620°-x)
=√sin²40°+sin²50°-cos²(x)
=√cos²50°+sin²50°-cos²(x)
=√1-cos²x
=|sinx| 180°<x<270° sinx<0
=-sinx
=√sin²40°+sin²50°-cos²(x)
=√cos²50°+sin²50°-cos²(x)
=√1-cos²x
=|sinx| 180°<x<270° sinx<0
=-sinx
追问
为什么cos²(1620°-x)变为了cos²(x)
追答
cos²(1620°-x)=cos²(1800°-180°-x)
=cos²(-180°-x)
=cos²(180°+x)
=(-cosx)²
=cos²x
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询