设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 ...
设数列an的前n项和为Sn,且2an=Sn+2n+1求a1a2a3求证:数列{an+2}是等比数列求数列{n*an}的前n项和Tn...
设数列an的前n项和为Sn,且2an=Sn+2n+1
求a1 a2 a3
求证:数列{an+2}是等比数列
求数列{n*an}的前n项和Tn 展开
求a1 a2 a3
求证:数列{an+2}是等比数列
求数列{n*an}的前n项和Tn 展开
展开全部
2an=Sn+2n+1
2a1=a1+2+1
a1=3 a2=8 a3=18
2an=Sn+2n+1 (1)
2a(n-1)=S(n-1)+2(n-1)+1 (2)
(1)-(2)
an-2a(n-1)=2
an+2=2[a(n-1)+2]
(an+2)/[a(n-1)+2] =2
数列{an+2}等比;公比为2;首项5
an+2=5*2^(n-1)
an+2=5*2^(n-1)-2
n*an=5n2^(n-1)-2n (分两项求和)
Tn1=5*[1+2*2^1+3*2^2+……+n2^(n-1)] (1)
2Tn1= 5*[ 2 +2*2^3+3*2^3+……+n2^n] (2)
(1)-(2)得
Tn1-2Tn1=-Tn=5[1+2^1+2^3+……+2^(n-1)-n2^n]
=5[ (2^n-1)/(2-1) -n2^n]
Tn1= 5[n2^n-2^n+1 ]
Tn2=2(1+2+3……+n)=n(n+1)
Tn=Tn1- Tn2
= 5[n2^n-2^n+1 ] -n(n+1)
=ok
2a1=a1+2+1
a1=3 a2=8 a3=18
2an=Sn+2n+1 (1)
2a(n-1)=S(n-1)+2(n-1)+1 (2)
(1)-(2)
an-2a(n-1)=2
an+2=2[a(n-1)+2]
(an+2)/[a(n-1)+2] =2
数列{an+2}等比;公比为2;首项5
an+2=5*2^(n-1)
an+2=5*2^(n-1)-2
n*an=5n2^(n-1)-2n (分两项求和)
Tn1=5*[1+2*2^1+3*2^2+……+n2^(n-1)] (1)
2Tn1= 5*[ 2 +2*2^3+3*2^3+……+n2^n] (2)
(1)-(2)得
Tn1-2Tn1=-Tn=5[1+2^1+2^3+……+2^(n-1)-n2^n]
=5[ (2^n-1)/(2-1) -n2^n]
Tn1= 5[n2^n-2^n+1 ]
Tn2=2(1+2+3……+n)=n(n+1)
Tn=Tn1- Tn2
= 5[n2^n-2^n+1 ] -n(n+1)
=ok
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询