
初三数学题急求解
如图,已知B是线段AE上一点,ABCD和BEFG都是正方形,连接AG、CE.(1)求证:AG=CE;(2)设CE与GF的交点为P,求证:PGCG=PEAG....
如图,已知B是线段AE上一点,ABCD和BEFG都是正方形,连接AG、CE.
(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:PGCG=PEAG. 展开
(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:PGCG=PEAG. 展开
1个回答
展开全部
第一问用SAS证明ABG和CBE全等
第二问做ph平行于AG
易得AG=PH 角ECB=角GAB=角PHE
角CPE=角CEB
所以三角形CPG与三角形EHP相似
所以PG:CG=PE:PH.
又有AG=PH
PG:CG=PE:AG.
第二问做ph平行于AG
易得AG=PH 角ECB=角GAB=角PHE
角CPE=角CEB
所以三角形CPG与三角形EHP相似
所以PG:CG=PE:PH.
又有AG=PH
PG:CG=PE:AG.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询