
八年及下其中数学必考重难点题型及例题!!马上考试!速度!!谢谢!
2个回答
展开全部
某工厂有甲、乙两条生产线先后投产。在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品。 (1)分别求出甲、乙两条生产线投产后,各自总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同; (2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高? 解:(1)由题意可得: 甲生产线生产时对应的函数关系式是:y=20x+200, 乙生产线生产时对应的函数关系式是:y=30x, 令20x+200=30x,解得x=20,即第20天结束时,两条生产线的产量相同。 (2)由(1)可知,甲生产线所对应的生产函数图象一定经过两点A(0,200)和 B(20,600); 乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。 因此图象如右图所示,由图象可知:第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。 5.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。 分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例如y=2x,y=2x+3的图象平行。 解:∵ y=kx+b与y=5-4x平行, ∴ k=-4, ∵ y=kx+b与y=-3(x-6)=-3x+18相交于y轴, ∴ b=18, ∴ y=-4x+18。 说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。 例6.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。 解:∵ 点B到x轴的距离为2, ∴ 点B的坐标为(0,±2), 设直线的解析式为y=kx±2, ∵ 直线过点A(-4,0), ∴ 0=-4k±2, 解得:k=± , ∴直线AB的解析式为y= x+2或y=- x-2。 1)图象是直线的函数是一次函数; (2)直线与y轴交于B点,则点B(0,yB); (3)点B到x轴距离为2,则|yB|=2; (4)点B的纵坐标等于直线解析式的常数项,即b=yB; (5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB; 下面只需待定k即可。 三、提高与思考 例1.已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3- )xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得n=-1, ∴ y1=-3x-1, y2=(3- )x, y2是正比例函数; y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小; y2=(3- )x的图象经过第一、三象限,y2随x的增大而增大。 说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。 例2.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。 分析:自画草图如下: 解:设正比例函数y=kx, 一次函数y=ax+b, ∵ 点B在第三象限,横坐标为-2, 设B(-2,yB),其中yB<0, ∵ =6, ∴ AO·|yB|=6, ∴ yB=-2, 把点B(-2,-2)代入正比例函数y=kx,得k=1, 把点A(-6,0)、B(-2,-2)代入y=ax+b, 得 解得: ∴ y=x, y=- x-3即所求。 说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示; (2)此例需要把条件(面积)转化为点B的坐标。这个转化实质含有两步:一是利用面积公式 AO· BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用|yB|=BD及点B在第三象限计算出yB=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y= (x+3
追问
有增根方面的题吗?谢谢!
追答
增根是指在方程的变形时,有时可能产生不适合原方程的 根,这种根叫做原方程的增根
(x^2 - 3x + 2) / (x - 2) =0
这一过程中,因为你要使分子为0,那么就就得出(x^2 - 3x + 2)=0
解下来有一根为2,但分母不能为零,故2就不是原方程的根,而是增根。
一般来说,增根有以下几种
使分母为0的根
使偶次根号下为小于0的根
不符合题目要求数值范围的根,如题目要求求大于3的根,而解出来有一个根为2,则这个2可能也是根,但在这个题目就是增根
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询