展开全部
lim(x-->0) [sin(6x) + xf(x)]/x³ = 0,要弄做不定式,分子和分母都要趋向0
sin(6x) + xf(x) = 0
xf(x) = - sin(6x)
f(x) = - (sin6x)/x
lim(x-->0) [6 + f(x)]/x²
= lim(x-->0) [6 - (sin6x)/x]/x²
= lim(x-->0) [6x - sin(6x)]/x³
= lim(x-->0) [6 - 6cos(6x)]/(3x²) <== 洛必达法则
= lim(x-->0) [- 6(- 6)sin(6x)]/(6x) <== 再洛必达法则
= lim(x-->0) 36 · sin(6x)/(6x)
= 36
sin(6x) + xf(x) = 0
xf(x) = - sin(6x)
f(x) = - (sin6x)/x
lim(x-->0) [6 + f(x)]/x²
= lim(x-->0) [6 - (sin6x)/x]/x²
= lim(x-->0) [6x - sin(6x)]/x³
= lim(x-->0) [6 - 6cos(6x)]/(3x²) <== 洛必达法则
= lim(x-->0) [- 6(- 6)sin(6x)]/(6x) <== 再洛必达法则
= lim(x-->0) 36 · sin(6x)/(6x)
= 36
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询