证明:延长GB至M使BM=DG,连接CM
∵四边形ABCD为菱形
∴AB=BC=CD=AD ∵AB=BD
∴AB=BC=CD=AD=BD
∴△ABD,△BCD为等边三角形
∴∠ADB=∠CDB=∠CBD=∠A=60°
∵AE=DF ∴△ADE≌△DBF
∴∠1=∠2 ∴∠CDG=∠ADB+∠CDB-∠2=120°-∠2
∵∠CBM=180°-∠CBD-∠1=120°-∠1
∴∠CDG=∠CBM ∵CD=CB,DG=BM
∴△CDG≌△CBM
∴CG=BM,∠3=∠4
∵∠3+∠5=∠BCD=60°
∴△CMG为等边三角形
∴CG=GM=BG+BM
∵DG=BM
∴CG=BG+DG