2个回答
展开全部
对任意固定点(x,y),令g(t)=f(tx,ty),则g(t)是可微函数,且g'(t)=x*af/ax(tx,ty)+y*af/ay(tx,ty)=【tx*af/ax(tx,ty)+ty*af/ay(tx,ty)】/t=0,t不等于0时。当t=0时,
按定义g'(0)=lim 【f(tx,ty)--f(0,0)】/t=lim 【tx*af/ax(0,0)+ty*af/ay(0,0)+小o(t)】/t=0,第一个等号是微分定义,因此总有g'(t)=0,故g(t)=g(0)=f(0,0)。
上式表明在过原点的直线上任一点的函数值=原点的函数值。因此f是常数。
按定义g'(0)=lim 【f(tx,ty)--f(0,0)】/t=lim 【tx*af/ax(0,0)+ty*af/ay(0,0)+小o(t)】/t=0,第一个等号是微分定义,因此总有g'(t)=0,故g(t)=g(0)=f(0,0)。
上式表明在过原点的直线上任一点的函数值=原点的函数值。因此f是常数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询