二重积分 直角坐标转极坐标转换

∫(上限2,下线0)dx∫(上限根号下(2x-x^2),下限0)f(x,y)dy求具体过程这个图要不是用画图软件不会画呀,有没有不画图的方法啊... ∫(上限2,下线0)dx ∫(上限根号下(2x-x^2),下限0)f(x,y)dy
求具体过程
这个图要不是用画图软件不会画呀,有没有不画图的方法啊
展开
我的行云笔记
高粉答主

2019-07-21 · 爱好读书的三线文艺青年
我的行云笔记
采纳数:59 获赞数:28652

向TA提问 私信TA
展开全部

二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:

一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式;

就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π

扩展资料:

在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。

为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为

可得到二重积分在极坐标下的表达式:

参考资料:百度百科-二重积分

长荣科机电
2024-10-27 广告
直角坐标机器人,作为深圳市长荣科机电设备有限公司的明星产品之一,以其高精度、高稳定性在自动化生产线上发挥着关键作用。该机器人采用直线电机或精密导轨驱动,能在电商平台Y、Z三个直角坐标轴上实现精准定位与运动控制,广泛应用于电子装配、包装、检测... 点击进入详情页
本回答由长荣科机电提供
阿鑫聊生活
高粉答主

2019-08-17 · 生活知识分享小达人,专注于讲解生活知识。
阿鑫聊生活
采纳数:1219 获赞数:235031

向TA提问 私信TA
展开全部

二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:

一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式;

就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π

扩展资料:

极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。

为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D。

参考资料来源:百度百科-二重积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mscheng19
推荐于2017-11-25 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2194万
展开全部
x的范围是0<=x<=2,0<=y<=根号(2x-x^2),平方地x^2+y^2=2x,因此画出图形可知是
x^2+y^2=2x的上半圆周与x轴包围区域。
变为极坐标后,x=rcosa,y=rsina,
则是r^2=2rcosa,即r=2cosa,因为r>=0,故cosa>=0,再由y>=0,得sina>=0,因此
0<=a<=pi/2,故0<=r<=2cosa。
积分化为
积分(从0到pi/2)da积分(从0到2cosa)f(rcosa,rsina)rdr
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式