已知a是实数,函数f(x)=2ax^2+2x

答案要详细点... 答案要详细点 展开
匿名用户
2012-04-12
展开全部
原题:
已知a是实数,函数f(x)=2ax^2+2x-3-a.如果函数y=f(x) 在区间[-1,1]上有零点,求a的取值范围.
答案要详细点

解答:
即求方程2ax^2+2x-3-a=0在区间[-1,1]上有解时,a的取值范围。

(1)a=0时,y是一次函数,此时y=2x-3,使y为0的x=3/2,不在[-1,1]上,所以在[-1,1]上没有零点,故a≠0.
(2)a≠0,f(x)=2ax^2+2x-3-a是个二次函数,函数f(x)的零点就是方程f(x)的实数根,也是函数f(x)的图像与x轴的交点.
一:图像在[-1,1]有一个交点,这个交点不是抛物线的顶点。此时有f(-1)*f(1)=(a-1)*(a-5)≤0,即1≤a≤5
二:图像在[-1,1]有一个交点,这个交点恰是抛物线的顶点.这时就要让函数△=0,再把令△=0的两根求出看看是否在区间[-1,1]中,如果在就保留,不在就舍去,解得a1=(-3-√7)/2 a2=(-3+√7)/2,当a=(-3-√7)/2时,由f(x)=0得x=(3-√7)/2∈[-1,1],所以此时也有零点
三:图像在[-1,1]有两个交点,此时分a>0和a<0两种情况讨论。函数在[-1,1]上有两个零点的充要条件是什么或者说是函数在[-1,1]上有两个零点等价于什么,我们把文字语言转化为数学语言就是
a>0
△=8a^2+24a+4>0
-1<(-1)/2a<1
f(1)≥0
f(-1)≥0

a<0
△=8a^2+24a+4>0
-1<(-1)/2a<1
f(1)≥0
f(-1)≥0

解得a≥5或a<(-3-√7)/2
再综合前面所有对a的讨论得出a的取值范围是a≥1或者a≤(-3-√7)/2
小百合1972
高粉答主

2012-04-12 · 每个回答都超有意思的
知道大有可为答主
回答量:4.2万
采纳率:78%
帮助的人:9007万
展开全部
题目没写完
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式