2个回答
展开全部
题目:
数列an,a1=1,an=2n/(n-1)[a(n-1)] +n,,n≥2 且bn=an/n +K为等比
1.求实数K和an,bn通项公式
2.若sn为an前n项和,求sn
答案:解:(1)当n≥2,n∈N*时,
an=2na(n-1)/(n-1)+n,
∴an/n=2a(n-1)/(n-1)+1,
即an/n+1=2[a(n-1)/(n-1)+1]
(an/n+1)/[a(n-1)/(n-1)+1]=2
所以an/n+1是以2为公比的等比数列
bn=an/n +K
故K=1时
有bn=2b(n-1),
b1=a1/1+1=2≠0
bn=2•2^(n-1)=2^n,
从而an=n•2^n-n
(2)Sn=1•2-1+2•2^2-2+…+n•2^n-n
=1•2+2•2^2+…+n•2^n-(1+2+…+n)
=1•2+2•2^2+…+n•2^n-n(n+1)/2
2Sn=1•2^2+2•2^3+…+n•2^(n+1)-n(n+1)
Sn-2Sn=2+2^2+2^3+............+2^n-n•2^(n+1)+n(n+1)/2
-Sn=2•(1-2^n)/(1-2)-n•2^(n+1)+n(n+1)/2
-Sn=2^(n+1)-2-n•2^(n+1)+n(n+1)/2
Sn=-2^(n+1)+2+n•2^(n+1)-n(n+1)/2
Sn=(n-1)•2^(n+1)-n(n+1)/2+2
Sn=(n-1)•2^(n+1)-(n^2+n-4)/2
数列an,a1=1,an=2n/(n-1)[a(n-1)] +n,,n≥2 且bn=an/n +K为等比
1.求实数K和an,bn通项公式
2.若sn为an前n项和,求sn
答案:解:(1)当n≥2,n∈N*时,
an=2na(n-1)/(n-1)+n,
∴an/n=2a(n-1)/(n-1)+1,
即an/n+1=2[a(n-1)/(n-1)+1]
(an/n+1)/[a(n-1)/(n-1)+1]=2
所以an/n+1是以2为公比的等比数列
bn=an/n +K
故K=1时
有bn=2b(n-1),
b1=a1/1+1=2≠0
bn=2•2^(n-1)=2^n,
从而an=n•2^n-n
(2)Sn=1•2-1+2•2^2-2+…+n•2^n-n
=1•2+2•2^2+…+n•2^n-(1+2+…+n)
=1•2+2•2^2+…+n•2^n-n(n+1)/2
2Sn=1•2^2+2•2^3+…+n•2^(n+1)-n(n+1)
Sn-2Sn=2+2^2+2^3+............+2^n-n•2^(n+1)+n(n+1)/2
-Sn=2•(1-2^n)/(1-2)-n•2^(n+1)+n(n+1)/2
-Sn=2^(n+1)-2-n•2^(n+1)+n(n+1)/2
Sn=-2^(n+1)+2+n•2^(n+1)-n(n+1)/2
Sn=(n-1)•2^(n+1)-n(n+1)/2+2
Sn=(n-1)•2^(n+1)-(n^2+n-4)/2
2012-04-13
展开全部
从网上找
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询