
化简1/(x²-4x+4)-x/(x²-4)+1/(2x+4)
展开全部
1/(x²-4x+4)-x/(x²-4)+1/(2x+4)
=1/(x-2)²-x/[(x-2)(x+2)]+1/2(x+2)
通分
=[2(x+2)-2x(x-2)+(x-2)²]/[2(x-2)²(x+2)]
=[2x+4-2x²+4x+x²-4x+4]/[2(x-2)²(x+2)]
=[-x²+2x+8]/[2(x-2)²(x+2)]
=-(x-4)(x+2)/[2(x-2)²(x+2)]
=-(x-4)/[2(x-2)²]
=1/(x-2)²-x/[(x-2)(x+2)]+1/2(x+2)
通分
=[2(x+2)-2x(x-2)+(x-2)²]/[2(x-2)²(x+2)]
=[2x+4-2x²+4x+x²-4x+4]/[2(x-2)²(x+2)]
=[-x²+2x+8]/[2(x-2)²(x+2)]
=-(x-4)(x+2)/[2(x-2)²(x+2)]
=-(x-4)/[2(x-2)²]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询