展开全部
过桥问题(1)
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。
总路程: (米)
通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程: (米)
火车速度: (米)
答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:
山洞长: (米)
答:这个山洞长60米。
和倍问题
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。
列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底。
奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
偶数与整数的积是偶数。
性质3 任何一个奇数一定不等于任何一个偶数。
1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
打字不容易,请采纳!
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。
总路程: (米)
通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程: (米)
火车速度: (米)
答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:
山洞长: (米)
答:这个山洞长60米。
和倍问题
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。
列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底。
奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
偶数与整数的积是偶数。
性质3 任何一个奇数一定不等于任何一个偶数。
1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
打字不容易,请采纳!
展开全部
小升初数学试卷 一 一.填空题:(每小题4分) 1. 一个数, 减去它的20%, 再加上5, 还比原来小3。那么, 这个数是______________。 2. 甲数比乙数小16%, 乙数比丙数大20%, 甲、乙、丙三数中, 最小的数是_________数。 3. 时钟上六点十分时, 分针和时针组成的钝角是______________度。 4. 一个真分数, 如乘以3, 分子比分母小16, 如除以 , 分母比分子小2, 这真分数是________。 5. 11 只李子的重量等于2只苹果和1只桃子的重量, 2只李子和1只苹果的重量等于1只桃子的重量, 那么, 一只桃子的重量等于__________只李子的重量。 6. A、B两数的和是 , A数的 倍与B数的两倍的和是16, A数是______________。 7. "六一"画展所参展的画中, 14幅不是六年级的, 17幅不是五年级的, 而五、六年级共展画21幅, 那么, 其它年级参展的画是___________幅。 8. 100克15%浓度的盐水中, 放进了盐8克, 为使溶液的浓度为20%, 那么, 还得再加进水_________克。 9. 甲、乙两厂生产的产品数量相等, 甲厂产品中正品的数量是乙厂次品数的3倍, 乙厂正品的数量是甲厂次品数量的4倍, 那么, 甲、乙两厂生产的正品的数量之比是__________。 二.应用题:(每题9分, 要求列式计算, 仅有答数不给分) 1. 两数相除的商是22, 余数是8, 被除数、除数、商数、余数的和是866, 问:被除数是多少? 2. 六一歌手大奖赛有407人参加, 女歌手未获奖人数占女歌手总数的 , 男歌手16人未获奖, 而获奖男女歌手人数一样多, 问:参赛的男歌手共几人? 3. 甲从A地往B地, 乙、丙两人从B地往A地, 三人同时出发, 甲首先在途中与乙相遇, 之后15分钟又与丙相遇, 甲每分钟走70米, 乙每分钟走60米, 丙每分钟走50米, 问:A、B两地相距多少米? 4. 一批拥军物资, 如用8辆大卡车装运, 3天可运完, 如用5辆小卡车装运, 8天可运完全部的75%, 现用3辆大卡车、4辆小卡车装运, 几天可以运完? 5. 三个小组的人数一样多, 第一小组男生数等于第二小组女生数, 第三小组的男生数是三个小组男生数总和的 , 问三个小组的男生总数占三个小组总人数的几分之几? 6. 甲乙两根进水管同时打开, 4小时可注满水池的40%, 接着甲管单独开5小时, 再由乙管单独开7.4小时, 方才注满水池, 问:如果独开乙管, 多少时间可将水池注满? 7. 于肖骑自行车8点钟从家出发, 8分钟后, 父亲骑摩托车去追赶, 追上于肖时, 于肖已离家4千米, 这时父亲因事立即赶回家, 再回头追赶, 第二次追上于肖时, 于肖已离家8千米, 问:父亲第二次追上于肖时是几点钟? 8. 甲车间人数比丙车间人数少 , 而丙车间人数比乙车间人数多25%, 且又比甲、乙两车间人数和的 少4 人, 问三个车间共有人数多少? 9. 某商店用480元买进一批货物, 如果全用每个6元的价格卖出, 可得利润25%, 实际上一部分货物因质量问题, 只能降价以每个5 元的价格卖出, 因此实得利润20%, 问这些货物中, 以6元的价格卖出的合格品是多少个? 10. 清晨4时, 甲车从A地, 乙车从B 地同时相对开出, 原指望在上午10时相遇, 但在6时30分, 乙车因故停在中途C地, 甲车继续前行350米在C地与乙车相遇, 相遇后, 乙车立即以原来每小时60千米的速度向A地开去。问:乙车几点才能到达A地? 六年级升初中衔接班数学试题一 一、选择题(把正确答案的序号写在后面的括号里) 1、如果a÷7/8=b×7/8(ab都是自然数),那么( )。 ①a>b ②a=b ③ a<b 2、在自然数中,凡是5的倍数( ) ①一定是质数 ② 一定是合数 ③可能是质数,也可能是合数] 3、小麦的出粉率一定,小麦的重量和磨成的面粉的重量( ) ①成反比例 ②成正比例 ③不成比例 4、一个比的前项是8,如果前项增加16,要使比值不变,后项应该( )。 ①增加16 ②乘以2 ③除以1/3 5一个三角形的三个角中最大是89度,这个三角形是( )。 ①锐角三角形 ②直角三角形 ③钝角三角形 6、一个圆柱体,如果它的底面直径扩大2倍,高不变,体积扩大( )倍。 ① 2 ② 4 ③ 6 二、填空题 1、二千零四十万七千写作( ),四舍五入到万位,约是( )万。 2、68个月=( )年( )个月 4升20毫升=( )立方分米 3、0.6:( )= 9.6÷( )=1.2 =( )% 4、自然数a除自然数b,商是18,a与b的最小公倍数是( )。 5、在比例尺是1 :50000的图纸上,量得两点之间的距离是12厘米,这两点的实际距离是( )千米。 6、在一个比例里,已知两个外项互为倒数,其中一个内项是最小的质数,另一个内项是( )。 7、一个圆柱体和一个圆锥体等底等高,如果它们的体积相差32立方分米,那么圆锥体的体积为( )立方厘米。 8、从168里连续减去12,减了( )次后,结果是12。 9一根钢材长5米,把它锯成每段长50厘米,需要 3/5小时,如果锯成每段长100厘米的钢段,需要( )小时。 10、一个长方体木料的长和宽都是4分米,高是8分米,这根木料的体积是( );如果把这根木料锯成两个正方体,那么这两个正方体的表面积的和是( )。 11、一个长方形的面积是210平方厘米,它的长和宽是两个连续的自然数,这个长方形的周长是( )。 三、应用题: 1、只列式不计算。 (1)某机关精简后有工作人员75人,比原来少45人,精简了百分之几? (2)甲乙两地相距405千米。一辆汽车从甲地开往乙地,4小时行驶了180千米。照这样的速度,再行驶多少小时,这辆汽车就可以到达乙地? 2、压路机的滚筒是一个圆柱体。滚筒直径⒈2米,长⒈5米。现在滚筒向前滚动120周,被压路面的面积是多少?(π取3.14) 3、某厂生产一批水泥,原计划每天生产150吨,可以按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?(用比例解) 4、加工一批零件,甲乙合作5小时完成,甲独做9小时完成。已知甲每小时比乙多加工2个零件,这批零件共有多少个? 5、体育场买来16个篮球和12个足球,共付出760元。已知篮球与足球的单价比是5:6,体育场买篮球和足球各付出多少元? 6、某商店购进一批皮凉鞋,每双售出价比购进价多15%。如果全部卖出,则可获利120元;如果只卖80双,则差64元才够成本。皮凉鞋的购进价每双多少元? 综合运用知识解决实际问题。、 1.把一个直径是2分米的圆柱的底面分成许多相等的扇形,然后沿直径把圆切开,拼成一个和它体积相等的长方体,这个长方体表面积比原来圆柱的表面积增加8平方分米,这个长方体的体积是多少? 2、把一个长7厘米,宽6厘米,高4.5厘米的长方体铁块和一个棱长5厘米的正方体的铁块,熔铸成一个大圆柱体,这个圆柱体的底面积是78.5平方厘米,那圆柱的高应是多少厘米? 六年制小学六年级数学毕业考试试卷 一、基础知识。 1、填空: ⑴太阳的直径约一百三十九万二千千米,写作( )千米,写成以“万”作单位的数是( )万千米。 ⑵120平方分米=( )平方米 3.5吨=( )千克 ⑶ =2:5=( )÷60=( )% ⑷把5米长的绳子平均剪成8段,每段是绳长的( ),每段长( )米。 ⑸在 、0.16和 这三个数中,最大的数是( ),最小的数是( )。 ⑹把3.07扩大( )倍是3070,把38缩小1000倍是( )。 ⑺把0.5: 化成最简整数比是( ):( ),比值是( )。 ⑻比a的3倍多1.8的数,用含有字母的式子表示是( ),当a=2.4时,这个式子的值是( )。 ⑼甲乙两地相距26千米,在地图上的距离是5.2厘米,这幅地图的比例尺是( )。 ⑽一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱少( )。 2、判断:(对的在括号里的“√”,错的打“×”) ⑴平行四边形的面积一定,底与高成反比例。 ( ) ⑵一个自然数,如果不是质数,就一定是合数。 ( ) ⑶六年级同学春季植树91棵,其中9棵没活,成活率是91%。 ( ) ⑷钟表上分针转动的速度是时针的12倍。 ( ) ⑸正方体的棱长扩大4倍,表面积就扩大16倍。 ( ) 3、选择:(把正确答案的序号填在括号里) ⑴ 是一个最简分数,a和c一定是( ) A、质数 B、合数 C、互质数 ⑵下面的分数中能化成有限小数的是( ) A、 B、 C、 ⑶2003年上半年有( )天 A、181 B、182 C、183 ⑷用一张边长是2分米的正方形纸,剪一个面积尽可能大的圆,这个圆的面积是( ) A、3.14 B、12.56 C、6.28 ⑸一个三角形三个内角的度数比是2:3:4,这个三角形是( )三角形。 A、锐角 B、直角 C、锐角 二、计算。 1、直接写出得数: ×12= 2.5-1.7= ÷3= 0.5×(2.6-2.4)= 2.2+3.57= - = 3.25×4= 0.9×(99+0.9)= 2、解方程: x-1.8=4.6 4+0.2x=30 = 8x-2x=25.2 3、计算下面各题,能简算的要简算: 1488+1068÷89 4.2÷1.5-0.36 4、只列式不计算: ⑴27.2减去11.8与13的和,差是多少? ⑵ 比x的25%多 ,求x? 三、操作题: 1、做三角形底边上的高,量一量底是( )厘米,高是( )厘米,计算三角形的面积。 2、画一个直径是4厘米的圆,并在圆中画出两条互相垂直的直径。 四、应用题: 1、中百超市运来黄瓜和西红柿350千克,其中黄瓜的重量占全部的 ,运来的黄瓜多少千克? 2、一桶油用去 ,还剩下48千克,这桶油原来重多少千克? 3、甲乙两地相距270千米,A、B两辆车同时从甲、乙两地相对开出,甲车每小时行42千米,乙车每小时行48千米,几小时后两车相遇? 4、永光农机厂计划8天生产384台小型收割机,由于改进了生产技术,实际每天比原计划多生产16台。实际多少天完成任务? 5、一件工程,要求师徒二人4小时合作完成,若徒弟单独做,需要6小时完成,那么,师傅在4小时之内需要完成这件工程的几分之几? 升学模拟测试卷(一) 一、填空。 1、一个数由8个亿、9个千万、6个百万、3个百、4个十组成,这个数是( )。改写成用“万”做单位的数是( ),省略“亿”后面的尾数是( )。 2、把2米长的铁丝平均截成5段,需要截( )次,每段是全长的( ),每段长( )米,每段是1米的( )。 3、320厘米=( )米( )分米 4.8吨=( )吨( )千克 4、12:20=—=( ):4=( )%=( )(填小数) 5、甲数与乙数的比是4:3,则乙数比甲数少( )%。 6、165 :45 的比值是( ),化成最简单的整数比是( )。 8、A=2×2×7 B=2×2×5 ,则A、B的最大公约数是( ),最小公倍数是( )。 9、长方形的周长是50分米,宽是长的23 ,这个长方形的面积是( )平方分米。 10、( )统计图既能清楚的表示出数量的多少,又能表示出数量增减变化情况。 二、判断。 1、一个分数,它的分母越大,分数单位就越小。( ) 2、一个自然数,不是质数就是合数。 ( ) 3、体积相等的正方体,表面机积也一定相等。 ( ) 4、通过圆心的线段叫直径。 ( ) 5、任何三角形至少有两个锐角。 ( ) 三、选择。 1、正方体的棱长扩大3倍,它的体积扩大( )倍。 A、3 B、9 C、27 2、小明画了一条6厘米长的( )。 A、直线 B、线段 C、射线 3、表示x和y成正比例关系的式子是( )。 A、x+y=10 B、x-y=10 C、y=10x 4、去掉下列各数中的0,而大小不变的是( )。 A、8.009 B、1800 C、16.00 5、能同时被2、5、3整除的最小四位数是( )。 A、1200 B、1005 C、1002 四、计算。 1、直接写出得数。 0.25×300 2.25+2.75 2.35 ×7 44÷11÷10 2.45÷7+57.57 0.1÷0.01 44÷4+4×14 3、求未知数。 X-0.8x-6 x:23 =183 23 x-12 x+1.2=3.4 7x=0.25+2x 4、计算下面各题,能简算的要简算。 (1)[12 -(34 -35 )]÷710 (2)10.5-10.5÷74 ×29 8.7×6.5+8.7×4.5-8.7 (45 +14 )÷73 +710 5、列式计算。 (1)从10201减去78,连续减多少次,最后得到的差是61? (2)一个数的80%比10的38 还多1.75,这个数是多少? (3)一个数的34 是60,这个数的25%是多少? 五、操作题。 画出一个半径是1.5厘米的圆,再画出这个圆的两条对称轴,并且使这两条对称轴相互垂直。 六、应用题。 1、一张桌子比一把椅子贵10元,如果椅子的单价是课桌单价的25 ,课桌和椅子的单价各是多少元? 2、一批水泥共185吨,第一天运走总数的40%,第二天运走37吨,剩下的第三天运完,第三天运走这批水泥的百分之几? 3、用铁皮做一个圆柱形油桶,底面周长是12.56分米,高是5分米。做这个油桶至少要用多少铁皮?如果1升汽油重0.68千克,这个油桶能装汽油多少千克?(结果保留整千克) 4、把一块石头,放入一个长和宽都是12分米、高15分米的长方形容器里,水面的高度由原来的8分米上升到10.4分米,求石头的体积。 5、一个长方体的长是712 厘米,高是3厘米,体积是90立方厘米,这个长方形的表面积是多少?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
甲乙两地距200km,k速度每小时25kmx与之开出,4小时相遇,x速度多少
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
参考资料: http://wenku.baidu.com/view/5f30bfd484254b35eefd3446.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
百度文库都有,好像是一到二十几章,你去查查吧。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |