已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足 2倍的根号下Sn等于an+1,数列{an}的通项公式为an... 30

已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足2倍的根号下Sn等于an+1,数列{an}的通项公式为an=an-1+2,设bn=1/(an乘an+1),求数... 已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足 2倍的根号下Sn等于an+1,数列{an}的通项公式为an=an-1 + 2,设bn=1/(an乘an+1) ,求数列 {bn}的前n项和Bn?
谢!
展开
 我来答
123QWE4163
2012-04-14 · TA获得超过3956个赞
知道小有建树答主
回答量:738
采纳率:0%
帮助的人:143万
展开全部
题目应有笔误,应该是“设数列{an}各项为正数,前n项和为Sn,且二倍根号下Sn=an+1,(n为一切正整数) (1)求数列{an}通项公式(2)记bn=1/(二倍根号下an+二倍根号下an+1),求数列{bn}的前n项和Tn”吧?
2√S(n)=a(n)+1,得2√a(1)=a(1)+1,解得a(1)=1
并有4S(n)=[a(n)+1]^2,及4S(n+1)=[a(n+1)+1]^2。后者减前者,易得
4a(n+1)=a(n+1)^2+2a(n+1)-a(n)^2-2a(n)
也即a(n+1)^2-2a(n+1)-a(n)^2-2a(n)=0
[a(n+1)+a(n)]*[a(n+1)-a(n)]-2[a(n+1)+a(n)]=0
[a(n+1)+a(n)]*[a(n+1)-a(n)-2]=0
因数列a(n)各项为正,故a(n+1)+a(n)>0,则必有a(n+1)-a(n)-2=0。于是数列a(n)是首项为1,公差为2的等差数列。则a(n)=2n-1
则b(n)=1/[2√a(n)+2√a(n+1)]=1/[2√(2n-1)+2√(2n+1)]=[√(2n+1)-√(2n-1)]/4
则数列{bn}的前n项和Tn=[√(2n+1)-1]/4
神枪手1949
2012-04-14 · TA获得超过285个赞
知道答主
回答量:124
采纳率:0%
帮助的人:51.2万
展开全部
题目有误吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式