如图,点D在反比例函数( k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三
如图,点D在反比例函数(k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形.(1)求反比例函数的解析式;(2)点B为横坐标为1的反...
如图,点D在反比例函数( k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形.
(1)求反比例函数的解析式;
(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线BA'的解析式
第一问y=4/x我已经算出来了,求第二问 展开
(1)求反比例函数的解析式;
(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线BA'的解析式
第一问y=4/x我已经算出来了,求第二问 展开
2个回答
展开全部
(2) 由题可知
∵点B是y=4/x上一点
又∵B的横坐标为1
∴y=4/1=4
∴B(1,4)
由折叠可知
△BOA1全等于△BOA
∵OA=1,AB=4
∴BE=A1P=1,OE=BA1=4
又∵∠OAB=90°,∠A1FO=∠BFE
∴∠BA1O=∠OEB=90°
∴△OA1F全等于△BFE(AAS)
∴A1F=EF
∵OE=EF+OF=4
∴A1F+OF=4
在Rt△A1OF中,由勾股定理得
OA1²+A1F²=OF²
设OF=x,则A1F=(4-x)
∴1²+(4-x)²=x²
∴x=17/8
∴OF=17/8
∵B(1,4)
∴联立方程组……
∴x=…,y=…
∴
∵点B是y=4/x上一点
又∵B的横坐标为1
∴y=4/1=4
∴B(1,4)
由折叠可知
△BOA1全等于△BOA
∵OA=1,AB=4
∴BE=A1P=1,OE=BA1=4
又∵∠OAB=90°,∠A1FO=∠BFE
∴∠BA1O=∠OEB=90°
∴△OA1F全等于△BFE(AAS)
∴A1F=EF
∵OE=EF+OF=4
∴A1F+OF=4
在Rt△A1OF中,由勾股定理得
OA1²+A1F²=OF²
设OF=x,则A1F=(4-x)
∴1²+(4-x)²=x²
∴x=17/8
∴OF=17/8
∵B(1,4)
∴联立方程组……
∴x=…,y=…
∴
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询