高一物理机械能守恒问题

一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为m.物体m2由静止从AB连线为水平位置开始... 一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图5-10所示.试求:

(1)m2在下滑过程中的最大速度.

(2)m2沿竖直杆能够向下滑动的最大距离.

绳子的拉力不会变的吗?
展开
tzredhat
2012-04-14 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:85%
帮助的人:5674万
展开全部
(1)由图可知,随m2的下滑,绳子拉力的竖直分量是逐渐增大的,m2在C点受力恰好平衡,因此m2从B到C是加速过程,以后将做减速运动,所以m2的最大速度即出现在图示位置.对m1、m2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE增=ΔE减,即

m1v1^2/2+m2v2^2/2+m1g(AC-AB)sin30°=m2g·BC

又由图示位置m1、m2受力平衡,应有:

Tcos∠ACB=m2g,T=m1gsin30°

又由速度分解知识知v1=v2cos∠ACB,代入数值可解得v2=2.15 m/s,

(2)m2下滑距离最大时m1、m2速度为零,在整个过程中应用机械能守恒定律,得:

ΔE增′=ΔE减′

即:m1g(sqrt(H^2+AB^2)-AB)sin30°=m2gH

利用(1)中质量关系可求得m2下滑的最大距离H=(4sqrt(3)/3)m=2.31 m

拉力会随着角度变化的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式