圆锥曲线问题
已知椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率为√6/3,过右焦点F且斜率为1的直线交椭圆C与A、B两点,N为弦AB...
已知椭圆C:x²/a² +y²/b²=1(a>b>0)的离心率为√6/3,过右焦点F且斜率为1的直线交椭圆C与A、B两点,N为弦AB的中点。
1.求直线ON的斜率Kon。
2.对于椭圆C上任意一点M,求证:总存在角θ(θ∈R)使等式:向量OM=cosθ向量OA+sinθ向量OB成立。 展开
1.求直线ON的斜率Kon。
2.对于椭圆C上任意一点M,求证:总存在角θ(θ∈R)使等式:向量OM=cosθ向量OA+sinθ向量OB成立。 展开
1个回答
展开全部
c/a=√6/3,b^2=a^2-c^2=1/3a^2
∴椭圆C:x²/a² +3y²/a²=1
x^2+3y^2=a²
1
AB:x=y+c代入 x^2+3y^2=a²
(y+c)^2+3y^2=a^2
4y^2+2cy+c^2-a^2=0
设A(x1,y1),B(x2,y2).N(x0,y0)
2y0=y1+y2=-c/2,y1y2=(c^2-a^2)/4
y0=-c/4,x0=3/4c
KoN=y0/x0=-1/3
2
M(x,y)
OM=mOA+nOB
=(mx1+nx2,my1+ny2)
∴(mx1+nx2)^2+3(my1+ny2)^2-a²=0
∴m^2(x1²+3y1²)+n^2(x2²+3y^2)+2mnx1x2+6mny1y2-a^2=0
m^2a^2 +n^2a^2+2mn(x1x2+3y1y2)-a^2=0
3y1y2=-3a^2/4,
x1x2=(y1+c)(y2+c)=y1y2+c(y1+y2)+c^2
∴x1x2+3y1y2=4y1y2+c(y1+y2)+1
= 4(c^2-a^2)/4+(-c^2/4)+c^2
=-a^2/3-c^2/6+c^2=0
∴ m^2a^2 +n^2a^2=a^2
∴m²+n²=1,m=cosθ,n=sinθ
即总存在角θ∈R使等式:
向量OM=cosθ向量OA+sinθ向量OB成立
∴椭圆C:x²/a² +3y²/a²=1
x^2+3y^2=a²
1
AB:x=y+c代入 x^2+3y^2=a²
(y+c)^2+3y^2=a^2
4y^2+2cy+c^2-a^2=0
设A(x1,y1),B(x2,y2).N(x0,y0)
2y0=y1+y2=-c/2,y1y2=(c^2-a^2)/4
y0=-c/4,x0=3/4c
KoN=y0/x0=-1/3
2
M(x,y)
OM=mOA+nOB
=(mx1+nx2,my1+ny2)
∴(mx1+nx2)^2+3(my1+ny2)^2-a²=0
∴m^2(x1²+3y1²)+n^2(x2²+3y^2)+2mnx1x2+6mny1y2-a^2=0
m^2a^2 +n^2a^2+2mn(x1x2+3y1y2)-a^2=0
3y1y2=-3a^2/4,
x1x2=(y1+c)(y2+c)=y1y2+c(y1+y2)+c^2
∴x1x2+3y1y2=4y1y2+c(y1+y2)+1
= 4(c^2-a^2)/4+(-c^2/4)+c^2
=-a^2/3-c^2/6+c^2=0
∴ m^2a^2 +n^2a^2=a^2
∴m²+n²=1,m=cosθ,n=sinθ
即总存在角θ∈R使等式:
向量OM=cosθ向量OA+sinθ向量OB成立
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询