已知函数f(x)=x/根号下(1+x^2),(x>0),数列an满足a1=f(x),a(n+1)=f(an)
已知函数f(x)=x/根号下(1+x^2),(x>0),数列an满足a1=f(x),a(n+1)=f(an)(1)求a2,a3,a4(2)猜想数列an的通项公式,并证明你...
已知函数f(x)=x/根号下(1+x^2),(x>0),数列an满足a1=f(x),a(n+1)=f(an)
(1) 求a2 ,a3 ,a4
(2)猜想数列an的通项公式,并证明你的猜想 展开
(1) 求a2 ,a3 ,a4
(2)猜想数列an的通项公式,并证明你的猜想 展开
1个回答
展开全部
1、
a1=f(x)=x/√(1+x²)
a2=f(a1)=[x/√(1+x²)]/√[1+x²/(1+x²)]=[x/√(1+x²)]/[√(2x²+1)/√(1+x²)]=x/√(2x²+1)
a3=f(a2)=[x/√(1+2x²)]/√[1+x²/(1+2x²)]=[x/√(1+2x²)]/[√(3x²+1)/√(1+2x²)]=x/√(3x²+1)
a4=f(a3)=[x/√(1+3x²)]/√[1+x²/(1+3x²)]=[x/√(1+3x²)]/[√(4x²+1)/√(1+3x²)]=x/√(4x²+1)
2、
猜想:an=x/√(nx²+1)
证:
由(1)得,n=1时,a1=x/√(1+x²),表达式成立。
假设当n=k(k∈N+)时,表达式成立,即ak=x/√(kx²+1),则当n=k+1时,
a(k+1)=f(ak)=[x/√(1+kx²)]/√[1+x²/(1+kx²)]=[x/√(1+kx²)]/[√((k+1)x²+1)/√(1+kx²)]=x/√[(k+1)x²+1],表达式同样成立。
综上,得数列{an}的通项公式为an=x/√(nx²+1)。
a1=f(x)=x/√(1+x²)
a2=f(a1)=[x/√(1+x²)]/√[1+x²/(1+x²)]=[x/√(1+x²)]/[√(2x²+1)/√(1+x²)]=x/√(2x²+1)
a3=f(a2)=[x/√(1+2x²)]/√[1+x²/(1+2x²)]=[x/√(1+2x²)]/[√(3x²+1)/√(1+2x²)]=x/√(3x²+1)
a4=f(a3)=[x/√(1+3x²)]/√[1+x²/(1+3x²)]=[x/√(1+3x²)]/[√(4x²+1)/√(1+3x²)]=x/√(4x²+1)
2、
猜想:an=x/√(nx²+1)
证:
由(1)得,n=1时,a1=x/√(1+x²),表达式成立。
假设当n=k(k∈N+)时,表达式成立,即ak=x/√(kx²+1),则当n=k+1时,
a(k+1)=f(ak)=[x/√(1+kx²)]/√[1+x²/(1+kx²)]=[x/√(1+kx²)]/[√((k+1)x²+1)/√(1+kx²)]=x/√[(k+1)x²+1],表达式同样成立。
综上,得数列{an}的通项公式为an=x/√(nx²+1)。
追问
可以再问你一个问题吗?
已知x=1是函数f(x)=ax^3-3(a+1)x^2+bx+1的一个极值点,其中a,b∈R,a<0
(1)求a与b的关系式
(2)求f(x)的单调区间
(3)当x∈闭区间-1,1时,函数y=f(x)的图像上任意一点的切线斜率恒大于3a,求a的取值范围
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询