已知数列1/(1*2),1/(2*3),1/(3*4),...,1/<n*(n+1)>,...,猜想Sn的表达式,并证明
已知数列1/(1*2),1/(2*3),1/(3*4),...,1/<n*(n+1)>,...,猜想Sn的表达式,并证明(归纳法)...
已知数列1/(1*2),1/(2*3),1/(3*4),...,1/<n*(n+1)>,...,猜想Sn的表达式,并证明(归纳法)
展开
展开全部
猜想:Sn=n/(n+1)
证:
n=1时,S1=1/(1×2)=1/2=1/(1+1),猜想的表达式成立。
假设当n=k(k∈N,且k≥1)时,表达式成立,即Sk=k/(k+1),则当n=k+1时,
S(k+1)=1/(1×2)+1/(2×3)+...+1/[k(k+1)]+1/[(k+1)(k+2)]
=Sk+1/[(k+1)(k+2)]
=k/(k+1)+1/[(k+1)(k+2)]
=[k(k+2)+1]/[(k+1)(k+2)]
=(k²+2k+1)/[(k+1)(k+2)]
=(k+1)²/[(k+1)(k+2)]
=(k+1)/(k+2)
=(k+1)/[(k+1)+1]
表达式同样成立。
综上,得Sn的表达式为Sn=n/(n+1)。
证:
n=1时,S1=1/(1×2)=1/2=1/(1+1),猜想的表达式成立。
假设当n=k(k∈N,且k≥1)时,表达式成立,即Sk=k/(k+1),则当n=k+1时,
S(k+1)=1/(1×2)+1/(2×3)+...+1/[k(k+1)]+1/[(k+1)(k+2)]
=Sk+1/[(k+1)(k+2)]
=k/(k+1)+1/[(k+1)(k+2)]
=[k(k+2)+1]/[(k+1)(k+2)]
=(k²+2k+1)/[(k+1)(k+2)]
=(k+1)²/[(k+1)(k+2)]
=(k+1)/(k+2)
=(k+1)/[(k+1)+1]
表达式同样成立。
综上,得Sn的表达式为Sn=n/(n+1)。
追问
麻烦说下如何进行猜想吧
追答
前面从略了。可以求S1、S2、S3,然后总结出表达式。不想写了,你自己写一下就可以了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询