如图,已知BE平分∠ABD,DE平分∠BDC,且BE⊥DE于点E,则AB∥CD吗? 5
展开全部
因为BE平分∠ABD,DE平分∠BDC,且BE⊥DE于点E
所以∠EAD+∠EDB=90°,,∠1=∠ABE,,∠2=∠DEC
∠1+∠AEB=90° ∠2+∠DEC=90°
180°——∠1+∠AEB=90° 180°——∠2+∠DEC=90°
AB∥CD
所以∠EAD+∠EDB=90°,,∠1=∠ABE,,∠2=∠DEC
∠1+∠AEB=90° ∠2+∠DEC=90°
180°——∠1+∠AEB=90° 180°——∠2+∠DEC=90°
AB∥CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AB∥CD
证明:
∵BE平分∠ABD
∴∠ABD=2∠1
∵DE平分∠BDC
∴∠CDB=2∠2
∵BE⊥DE
∴∠1+∠2=90°
∴2∠1+2∠2=180°
即∠ABD+∠CDB=180°
∴AB∥CD
证明:
∵BE平分∠ABD
∴∠ABD=2∠1
∵DE平分∠BDC
∴∠CDB=2∠2
∵BE⊥DE
∴∠1+∠2=90°
∴2∠1+2∠2=180°
即∠ABD+∠CDB=180°
∴AB∥CD
追问
∠ABD+∠CDB=180°∴AB∥CD
是根据什么的呢?
追答
同旁内角互补,两条直线平行
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AB//CD你将BE延长,与DC延长线相交就能看得出来了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询