导数问题 急

函数g(x)=ax^3+2(1-a)x^2-3ax在区间(-无穷,a/3)内单调递减,则a的取值范围是?... 函数g(x)=ax^3+2(1-a)x^2-3ax在区间(-无穷,a/3)内单调递减,则a的取值范围是? 展开
朴质又清静丶饼子3
2012-04-16 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2226
采纳率:66%
帮助的人:1016万
展开全部
g(x)在(-∞,a/3)上单调递减,说明在这个区间上函数的导数都是小于等于零的,也就是说,在这个区间上,导函数g'(x)的最大值小于等于零。
g(x) = ax³ + 2(1 - a)x² - 3ax
g'(x) = 3ax² + 4(1 - a)x - 3a = 3a[ x + 2(1-a)/3a ]² - 3a - 4(1 - a)²/3a (a ≠ 0)

①当 a > 0 时,显然g'(x)是一个开口向上的抛物线,不管a为多少,它在(-∞,a/3)没有最大值,因此a > 0不合题意,舍去。

②当 a < 0 时,g'(x)是一个开口向下的抛物线,它的对称轴为 x = 2(a - 1)/3a
由a/3 ≤ 2(a - 1)/3a ,a² ≥ 2a - 2,a² - 2a + 2 ≥ 0,恒成立
结合前提条件可得 a < 0,此时,(-∞,a/3)是g'(x)的递增区间内
此时g'(x)的最大值为g'(a/3) = a³/3 - 4a²/3 - 5a/3 ≤ 0
解得 a ≤ -1 或 a ≥ 5(舍去)

③当 a = 0 时,g(x) = 2x² ,g'(x) = 4x
g'(x)在区间(-∞,0)上恒小于零,满足题意。

综上可知a的取值范围为a≤-1或a=0

1147243576求的结论是错误的,比方说a=3
g(x) = 3x³ - 4x² - 9x
g'(x) = 9x² - 8x - 9
区间为(-∞,1)
取x = -1,可得g'(x) = 8 > 0
不满足导函数小于零的条件。
1147243576
2012-04-15 · TA获得超过231个赞
知道答主
回答量:103
采纳率:0%
帮助的人:91.3万
展开全部
求导g(x)=3ax²+4(1-a)x-3a
函数g(x)=ax^3+2(1-a)x^2-3ax在区间(-无穷,a/3)内单调递减
所以x=a/3时,导数g(x)≤0
3a×【(a/3)²】+4(1-a)×a/3-3a≤0
化简,得
a(a-5)(a+1)≤0
解得a≤-1或0≤a≤5

参考资料: .

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Va_e一
2012-04-15
知道答主
回答量:10
采纳率:0%
帮助的人:6.7万
展开全部
算了半天没思路啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式