如图,点M是正方形ABCD的边AB的中点,连接DM.将三角形ADM沿DM翻折得到三角形A'DM,延长MA'交DC的延长线于点E

zhigui285
2012-04-15 · TA获得超过8970个赞
知道小有建树答主
回答量:1496
采纳率:100%
帮助的人:486万
展开全部
解:∵AB∥DC,
∴∠EDM=∠AMD=∠DME,
∴EM=ED
设AD=A′D=4k,则A′M=AM=2k,
∴DE=EA′+2k.
在Rt△DA′E中,A′D2+A′E2=DE2,
∴(4k)2+A′E2=(EA′+2k)2,
解得A′E=3k,
A′D:A′E=4/3.
休息休息呀我
2012-06-12 · TA获得超过255个赞
知道答主
回答量:98
采纳率:0%
帮助的人:36万
展开全部
解:∵AB∥DC,
∴∠EDM=∠AMD=∠DME,
∴EM=ED
设AD=A′D=4k,则A′M=AM=2k,
∴DE=EA′+2k.
在Rt△DA′E中,A′D2+A′E2=DE2,
∴(4k)2+A′E2=(EA′+2k)2,
解得A′E=3k,
A′D:A′E=4/3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
芝玫甜y
2012-05-27 · TA获得超过168个赞
知道答主
回答量:55
采纳率:0%
帮助的人:11.7万
展开全部
解:∵AB∥DC,
∴∠EDM=∠AMD=∠DME,
∴EM=ED
设AD=A′D=4k,则A′M=AM=2k,
∴DE=EA′+2k.
在Rt△DA′E中,A′D2+A′E2=DE2,
∴(4k)2+A′E2=(EA′+2k)2,
解得A′E=3k,
A′D:A′E=4/3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式