
展开全部
1/1*3=0.5*(1-1/3)=1/(1*2+1)
1/1*3+1/3*5=0.5*(1-1/3+1/3-1/5)=2/(2*2+1)
...
1/1*3+1/3*5+1/5*7+....+1/(2n-1)(2n+1)
=1/2{1-1/3+1/3-1/5+....+1/(2n-1)-1/(2n+1)}
=1/2{1-1/(2n+1)}
=n/(2n+1)
1/1*3+1/3*5+1/5*7+....+1/(2n-1)(2n+1)+1/(2n+1)(2n+3)
=1/2{1-1/3+1/3-1/5+....+1/(2n-1)-1/(2n+1)+1/(2n+1)-1/(2n+3)}
=1/2{1-1/(2n+3)}
=(n+1)/[2(n+1) +1]
所以
1/1*3+1/3*5+1/5*7+....+1/(2n-1)(2n+1)=0.5*(1-1/3+1/3-1/5....-1/(2n+1))
=n/(2n+1)
1/1*3+1/3*5=0.5*(1-1/3+1/3-1/5)=2/(2*2+1)
...
1/1*3+1/3*5+1/5*7+....+1/(2n-1)(2n+1)
=1/2{1-1/3+1/3-1/5+....+1/(2n-1)-1/(2n+1)}
=1/2{1-1/(2n+1)}
=n/(2n+1)
1/1*3+1/3*5+1/5*7+....+1/(2n-1)(2n+1)+1/(2n+1)(2n+3)
=1/2{1-1/3+1/3-1/5+....+1/(2n-1)-1/(2n+1)+1/(2n+1)-1/(2n+3)}
=1/2{1-1/(2n+3)}
=(n+1)/[2(n+1) +1]
所以
1/1*3+1/3*5+1/5*7+....+1/(2n-1)(2n+1)=0.5*(1-1/3+1/3-1/5....-1/(2n+1))
=n/(2n+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |