设z=z(x,y)是由方程x=zf(y/x)确定的隐函数,其中f(u)具有连续的导数,且x-yf'(y/...
设z=z(x,y)是由方程x=zf(y/x)确定的隐函数,其中f(u)具有连续的导数,且x-yf'(y/z)不等于0,求x(偏导z/偏导x)+y(偏导z/偏导y)...
设z=z(x,y)是由方程x=zf(y/x)确定的隐函数,其中f(u)具有连续的导数,且x-yf'(y/z)不等于0,求x(偏导z/偏导x)+y(偏导z/偏导y)
展开
1个回答
2012-04-18
展开全部
因为(偏导z/偏导x)=(1+z(x,y)*f‘(y/x)*y/x^2)/f(y/x)
(偏导z/偏导y)=-(z(x,y)*f‘(y/x))/(x*f(y/x))
所以x(偏导z/偏导x)+y(偏导z/偏导y)=x/f(y/x)
(偏导z/偏导y)=-(z(x,y)*f‘(y/x))/(x*f(y/x))
所以x(偏导z/偏导x)+y(偏导z/偏导y)=x/f(y/x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询