设函数f(x)=2根号3sinxcosx+2cos平方x-1(x属于R 求函数在区间[0π/2]上的最大值最小值
展开全部
f(x)=根号3sin2x+cos2x
=2(cosπ/6sin2x+sinπ/6cos2x)
=2sin(2x+π/6)
因为函数在区间[0,π/2]上
所以π/6≤2x+π/6≤7π/6
当2x+π/6=π/2,即x=π/6时
函数最大值=2
当2x+π/6=7π/6,即x=π/2时
函数最小值=-1
=2(cosπ/6sin2x+sinπ/6cos2x)
=2sin(2x+π/6)
因为函数在区间[0,π/2]上
所以π/6≤2x+π/6≤7π/6
当2x+π/6=π/2,即x=π/6时
函数最大值=2
当2x+π/6=7π/6,即x=π/2时
函数最小值=-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-04-17 · 知道合伙人教育行家
关注
展开全部
解:
f(x)=根号3sin2x+cos2x
=2(cosπ/6sin2x+sinπ/6cos2x)
=2sin(2x+π/6)
函数在区间[0,π/2]上
当x=π/6时函数有最大值2
x=π/2时,函数有最小值-1
f(x)=根号3sin2x+cos2x
=2(cosπ/6sin2x+sinπ/6cos2x)
=2sin(2x+π/6)
函数在区间[0,π/2]上
当x=π/6时函数有最大值2
x=π/2时,函数有最小值-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
f(x)=根号3sin2x+cos2x
=2(cosπ/6sin2x+sinπ/6cos2x)
=2sin(2x+π/6)
函数在区间[0,π/2]上
当x=π/6时函数有最大值2
x=π/2时,函数有最小值-1
f(x)=根号3sin2x+cos2x
=2(cosπ/6sin2x+sinπ/6cos2x)
=2sin(2x+π/6)
函数在区间[0,π/2]上
当x=π/6时函数有最大值2
x=π/2时,函数有最小值-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询