逻辑运算又称布尔运算。布尔用数学方法研究逻辑问题,成功地建立了逻辑演算。
他用等式表示判断,把推理看作等式的变换。这种变换的有效性不依赖人们对符号的解释,只依赖于符号的组合规律 。这一逻辑理论人们常称它为布尔代数。
20世纪30年代,逻辑代数在电路系统上获得应用,随后,由于电子技术与计算机的发展,出现各种复杂的大系统,它们的变换规律也遵守布尔所揭示的规律。
逻辑运算 (logical operators) 通常用来测试真假值。最常见到的逻辑运算就是循环的处理,用来判断是否该离开循环或继续执行循环内的指令。
1、逻辑常量与变量:逻辑常量只有两个,即0和1,用来表示两个对立的逻辑状态。逻辑变量与普通代数一样,也可以用字母、符号、数字及其组合来表示,但它们之间有着本质区别,因为逻辑常量的取值只有两个,即0和1,而没有中间值。
2、逻辑运算:在逻辑代数中,有与、或、非三种基本逻辑运算。表示逻辑运算的方法有多种,如语句描述、逻辑代数式、真值表、卡诺图等。
3、逻辑函数:逻辑函数是由逻辑变量、常量通过运算符连接起来的代数式。同样,逻辑函数也可以用表格和图形的形式表示。
4、逻辑代数:逻辑代数是研究逻辑函数运算和化简的一种数学系统。逻辑函数的运算和化简是数字电路课程的基础,也是数字电路分析和设计的关键。
扩展资料:
表示方法
"∨" 表示"或"
"∧" 表示"与".
"┐"表示"非".
"=" 表示"等价".
1和0表示"真"和"假"
(还有一种表示,"+"表示"或", "·"表示"与")
Boolean(布尔运算)的参数面板可分成三部分。
布尔运算练习模型:骰子
Pick Boolean(拾取布尔运算对象)卷展栏
该卷展栏用来拾取运算对象B。
这是一免费文档,自己下载学习吧。