勾股定理的逆定理证明方法

 我来答
12345A帮助
推荐于2016-12-01 · TA获得超过123万个赞
知道顶级答主
回答量:65.3万
采纳率:0%
帮助的人:45.2亿
展开全部
设三条边分别为a、b、c,对应的角分别为角A、角B、角C
过C点做c边的垂线,即三角形的高,垂足为D,设此高长度为h
则三角形的面积S=hc/2

因为BD=根号(a*a-h*h) AD=根号(b*b-h*h)
所以AB=BD+AD=根号(a*a-h*h)+根号(b*b-h*h)

因为AB=c
所以c=根号(a*a-h*h)+根号(b*b-h*h)
两边平方得:
c*c=(a*a-h*h)+(b*b-h*h)+2*根号[a*a*b*b-(a*a+b*b)*h*h+h*h*h*h]

因为c*c=a*a+b*b,代入上式得:
2*根号[a*a*b*b-c*c*h*h+h*h*h*h]=2*h*h
两边平方得:
a*a*b*b-c*c*h*h+h*h*h*h=h*h*h*h
所以a*a*b*b=c*c*h*h
两边开方得:
a*b=c*h

因为三角形面积S=c*h/2=a*b/2
因为a、b为三角形两条边,
所以只有直角三角形才有可能

即从c*c=a*a+b*b 推出为直角三角形
洋葱学园
2022-07-19 · 原洋葱数学。好课上洋葱,学习更主动
洋葱学园
向TA提问
展开全部
勾股定理的逆定理证明


勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_
根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。
由于a_+b_=c_,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
已知在△ABC中,,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x_+y_=c_,
又∵a_+b_=c_,
∴a_+b_=x_+y_(A)
但a>y,b>x,∴a_+b_>x_+y_(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_
∵x_+y_=b_,
得a_+b_=c_=a_+b_+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式