初三所有数学公式!急用

悬赏40财富,10的订金,要快30分钟内概率和统计一章的,要具体一点550315732@qq.com... 悬赏40财富,10的订金,要快30分钟内
概率和统计一章的,要具体一点
550315732@qq.com
展开
长雨一
2012-04-20 · TA获得超过108个赞
知道答主
回答量:17
采纳率:0%
帮助的人:28.2万
展开全部
第一章 随机事件和概率
(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列 重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算 ①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。
A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率: ,
(7)概率的公理化定义 设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有

常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型 1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =

(9)几何概型 若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
。其中L为几何度量(长度、面积、体积)。
(10)加法公式 P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式 P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率 定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式 乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性 ①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
若事件 、 相互独立,且 ,则有

若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式 设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式 设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型 我们作了 次试验,且满足
u 每次试验只有两种可能结果, 发生或 不发生;
u 次试验是重复进行的,即 发生的概率每次均一样;
u 每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
这种试验称为伯努利概型,或称为 重伯努利试验。
用 表示每次试验 发生的概率,则 发生的概率为 ,用 表示 重伯努利试验中 出现 次的概率,
, 。
第二章 随机变量及其分布
(1)离散型随机变量的分布律 设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度 设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:
1° 。
2° 。
(3)离散与连续型随机变量的关系
积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。
(4)分布函数 设 为随机变量, 是任意实数,则函数

称为随机变量X的分布函数,本质上是一个累积函数。
可以得到X落入区间 的概率。分布函数 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
4° ,即 是右连续的;
5° 。
对于离散型随机变量, ;
对于连续型随机变量, 。
(5)八大分布 0-1分布 P(X=1)=p, P(X=0)=q

二项分布 在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。
, 其中 ,
则称随机变量 服从参数为 , 的二项分布。记为 。
当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布 设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
几何分布 ,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
均匀分布 设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即

a≤x≤b
其他,
则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为

a≤x≤b

0, x<a,

1, x>b。

当a≤x1<x2≤b时,X落在区间( )内的概率为

指数分布 ,

0, ,

其中 ,则称随机变量X服从参数为 的指数分布。
X的分布函数为
,

x<0。

记住积分公式:

正态分布 设随机变量 的密度函数为
, ,
其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。
具有如下性质:
1° 的图形是关于 对称的;
2° 当 时, 为最大值;
若 ,则 的分布函数为
。。

参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为

是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。

(6)分位数 下分位表: ;
上分位表: 。
(7)函数分布 离散型 已知 的分布列为

的分布列( 互不相等)如下:

若有某些 相等,则应将对应的 相加作为 的概率。
连续型 先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。
第三章 二维随机变量及其分布
(1)联合分布 离散型 如果二维随机向量 (X,Y)的所有可能取值为至多可列个有序对(x,y),则称 为离散型随机量。
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称

为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X y1 y2 … yj …
x1 p11 p12 … p1j …
x2 p21 p22 … p2j …

xi pi1 … …

这里pij具有下面两个性质:
(1)pij≥0(i,j=1,2,…);
(2)
连续型 对于二维随机向量 ,如果存在非负函数 ,使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D={(X,Y)|a<x<b,c<y<d}有

则称 为连续型随机向量;并称f(x,y)为 =(X,Y)的分布密度或称为X和Y的联合分布密度。
分布密度f(x,y)具有下面两个性质:
(1) f(x,y)≥0;
(2)
(2)二维随机变量的本质
(3)联合分布函数 设(X,Y)为二维随机变量,对于任意实数x,y,二元函数

称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。
分布函数是一个以全平面为其定义域,以事件 的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:
(1)
(2)F(x,y)分别对x和y是非减的,即
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1);
(3)F(x,y)分别对x和y是右连续的,即

(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布 离散型 X的边缘分布为

Y的边缘分布为

连续型 X的边缘分布密度为

Y的边缘分布密度为

(6)条件分布 离散型 在已知X=xi的条件下,Y取值的条件分布为

在已知Y=yj的条件下,X取值的条件分布为

连续型 在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为

(7)独立性 一般型 F(X,Y)=FX(x)FY(y)
离散型
有零不独立
连续型 f(x,y)=fX(x)fY(y)
直接判断,充要条件:
①可分离变量
②正概率密度区间为矩形
二维正态分布
=0
随机变量的函数 若X1,X2,…Xm,Xm+1,…Xn相互独立, h,g为连续函数,则:
h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。
特例:若X与Y独立,则:h(X)和g(Y)独立。
例如:若X与Y独立,则:3X+1和5Y-2独立。
(8)二维均匀分布 设随机向量(X,Y)的分布密度函数为

其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。
例如图3.1、图3.2和图3.3。
y
1

D1
O 1 x

图3.1

y
D2

1
1

O 2 x

图3.2

y
D3
d

c
O a b x
图3.3

(9)二维正态分布 设随机向量(X,Y)的分布密度函数为

其中 是5个参数,则称(X,Y)服从二维正态分布,
记为(X,Y)~N(
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N(
但是若X~N( ,(X,Y)未必是二维正态分布。
(10)函数分布 Z=X+Y 根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn) 若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:

分布 设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和

的分布密度为

我们称随机变量W服从自由度为n的 分布,记为W~ ,其中

所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。
分布满足可加性:设



t分布 设X,Y是两个相互独立的随机变量,且

可以证明函数

的概率密度为

我们称随机变量T服从自由度为n的t分布,记为T~t(n)。

F分布 设 ,且X与Y独立,可以证明 的概率密度函数为

我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为F~f(n1, n2).

第四章 随机变量的数字特征
(1)一维随机变量的数字特征 离散型 连续型
期望
期望就是平均值 设X是离散型随机变量,其分布律为P( )=pk,k=1,2,…,n,

(要求绝对收敛) 设X是连续型随机变量,其概率密度为f(x),

(要求绝对收敛)
函数的期望 Y=g(X)

Y=g(X)

方差
D(X)=E[X-E(X)]2,
标准差


矩 ①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即
νk=E(Xk)= , k=1,2, ….
②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即

= , k=1,2, …. ①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即
νk=E(Xk)=
k=1,2, ….
②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即

=
k=1,2, ….
切比雪夫不等式 设随机变量X具有数学期望E(X)=μ,方差D(X)=σ2,则对于任意正数ε,有下列切比雪夫不等式

切比雪夫不等式给出了在未知X的分布的情况下,对概率

的一种估计,它在理论上有重要意义。
(2)期望的性质 (1) E(C)=C
(2) E(CX)=CE(X)
(3) E(X+Y)=E(X)+E(Y),
(4) E(XY)=E(X) E(Y),充分条件:X和Y独立;
充要条件:X和Y不相关。
(3)方差的性质 (1) D(C)=0;E(C)=C
(2) D(aX)=a2D(X); E(aX)=aE(X)
(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b
(4) D(X)=E(X2)-E2(X)
(5) D(X±Y)=D(X)+D(Y),充分条件:X和Y独立;
充要条件:X和Y不相关。
D(X±Y)=D(X)+D(Y) ±2E[(X-E(X))(Y-E(Y))],无条件成立。
而E(X+Y)=E(X)+E(Y),无条件成立。
(4)常见分布的期望和方差 期望 方差
0-1分布 p
二项分布 np
泊松分布
几何分布
超几何分布
均匀分布
指数分布
正态分布
n 2n
t分布 0 (n>2)
(5)二维随机变量的数字特征 期望

函数的期望 =


方差

协方差 对于随机变量X与Y,称它们的二阶混合中心矩 为X与Y的协方差或相关矩,记为 ,即

与记号 相对应,X与Y的方差D(X)与D(Y)也可分别记为 与 。
相关系数 对于随机变量X与Y,如果D(X)>0, D(Y)>0,则称

为X与Y的相关系数,记作 (有时可简记为 )。
| |≤1,当| |=1时,称X与Y完全相关:
完全相关
而当 时,称X与Y不相关。
以下五个命题是等价的:
① ;
②cov(X,Y)=0;
③E(XY)=E(X)E(Y);
④D(X+Y)=D(X)+D(Y);
⑤D(X-Y)=D(X)+D(Y).
协方差矩阵
混合矩 对于随机变量X与Y,如果有 存在,则称之为X与Y的k+l阶混合原点矩,记为 ;k+l阶混合中心矩记为:

(6)协方差的性质 (i) cov (X, Y)=cov (Y, X);
(ii) cov(aX,bY)=ab cov(X,Y);
(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);
(iv) cov(X,Y)=E(XY)-E(X)E(Y).
(7)独立和不相关 (i) 若随机变量X与Y相互独立,则 ;反之不真。
(ii) 若(X,Y)~N( ),
则X与Y相互独立的充要条件是X和Y不相关。
第五章 大数定律和中心极限定理
(1)大数定律
切比雪夫大数定律 设随机变量X1,X2,…相互独立,均具有有限方差,且被同一常数C所界:D(Xi)<C(i=1,2,…),则对于任意的正数ε,有

特殊情形:若X1,X2,…具有相同的数学期望E(XI)=μ,则上式成为

伯努利大数定律 设μ是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数ε,有

伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即

这就以严格的数学形式描述了频率的稳定性。
辛钦大数定律 设X1,X2,…,Xn,…是相互独立同分布的随机变量序列,且E(Xn)=μ,则对于任意的正数ε有

(2)中心极限定理
列维-林德伯格定理 设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差: ,则随机变量

的分布函数Fn(x)对任意的实数x,有

此定理也称为独立同分布的中心极限定理。
棣莫弗-拉普拉斯定理 设随机变量 为具有参数n, p(0<p<1)的二项分布,则对于任意实数x,有

(3)二项定理 若当 ,则

超几何分布的极限分布为二项分布。
(4)泊松定理 若当 ,则

其中k=0,1,2,…,n,…。
二项分布的极限分布为泊松分布。
第六章 样本及抽样分布
(1)数理统计的基本概念 总体 在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。
个体 总体中的每一个单元称为样品(或个体)。
样本 我们把从总体中抽取的部分样品 称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时, 表示n个随机变量(样本);在具体的一次抽取之后, 表示n个具体的数值(样本值)。我们称之为样本的两重性。
样本函数和统计量 设 为总体的一个样本,称
( )
为样本函数,其中 为一个连续函数。如果 中不包含任何未知参数,则称 ( )为一个统计量。
常见统计量及其性质 样本均值
样本方差
样本标准差
样本k阶原点矩

样本k阶中心矩

, ,
, ,
其中 ,为二阶中心矩。
(2)正态总体下的四大分布 正态分布 设 为来自正态总体 的一个样本,则样本函数

t分布 设 为来自正态总体 的一个样本,则样本函数

其中t(n-1)表示自由度为n-1的t分布。
设 为来自正态总体 的一个样本,则样本函数

其中 表示自由度为n-1的 分布。
F分布 设 为来自正态总体 的一个样本,而 为来自正态总体 的一个样本,则样本函数

其中

表示第一自由度为 ,第二自由度为 的F分布。
(3)正态总体下分布的性质 与 独立。
第七章 参数估计
(1)点估计 矩估计 设总体X的分布中包含有未知数 ,则其分布函数可以表成 它的k阶原点矩 中也包含了未知参数 ,即 。又设 为总体X的n个样本值,其样本的k阶原点矩为

这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有

由上面的m个方程中,解出的m个未知参数 即为参数( )的矩估计量。

若 为 的矩估计, 为连续函数,则 为 的矩估计。
极大似然估计 当总体X为连续型随机变量时,设其分布密度为 ,其中 为未知参数。又设 为总体的一个样本,称

为样本的似然函数,简记为Ln.
当总体X为离型随机变量时,设其分布律为 ,则称

为样本的似然函数。
若似然函数 在 处取到最大值,则称 分别为 的最大似然估计值,相应的统计量称为最大似然估计量。

若 为 的极大似然估计, 为单调函数,则 为 的极大似然估计。
(2)估计量的评选标准 无偏性 设 为未知参数 的估计量。若E ( )= ,则称 为 的无偏估计量。
E( )=E(X), E(S2)=D(X)
有效性 设 和 是未知参数 的两个无偏估计量。若 ,则称 有效。
一致性 设 是 的一串估计量,如果对于任意的正数 ,都有

则称 为 的一致估计量(或相合估计量)。

若 为 的无偏估计,且 则 为 的一致估计。
只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。
(3)区间估计 置信区间和置信度 设总体X含有一个待估的未知参数 。如果我们从样本 出发,找出两个统计量 与 ,使得区间 以 的概率包含这个待估参数 ,即

那么称区间 为 的置信区间, 为该区间的置信度(或置信水平)。
单正态总体的期望和方差的区间估计
设 为总体 的一个样本,在置信度为 下,我们来确定 的置信区间 。具体步骤如下:
(i)选择样本函数;
(ii)由置信度 ,查表找分位数;
(iii)导出置信区间 。
已知方差,估计均值 (i)选择样本函数

(ii) 查表找分位数

(iii)导出置信区间

未知方差,估计均值 (i)选择样本函数

(ii)查表找分位数

(iii)导出置信区间

方差的区间估计 (i)选择样本函数

(ii)查表找分位数

(iii)导出 的置信区间

第八章 假设检验
基本思想 假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。
为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。
这里所说的小概率事件就是事件 ,其概率就是检验水平α,通常我们取α=0.05,有时也取0.01或0.10。
基本步骤 假设检验的基本步骤如下:
(i) 提出零假设H0;
(ii) 选择统计量K;
(iii) 对于检验水平α查表找分位数λ;
(iv) 由样本值 计算统计量之值K;
将 进行比较,作出判断:当 时否定H0,否则认为H0相容。
两类错误
第一类错误 当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设),称这种错误为“以真当假”的错误或第一类错误,记 为犯此类错误的概率,即
P{否定H0|H0为真}= ;
此处的α恰好为检验水平。
第二类错误 当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受了不真实的假设),称这种错误为“以假当真”的错误或第二类错误,记 为犯此类错误的概率,即
P{接受H0|H1为真}= 。
两类错误的关系 人们当然希望犯两类错误的概率同时都很小。但是,当容量n一定时, 变小,则 变大;相反地, 变小,则 变大。取定 要想使 变小,则必须增加样本容量。
在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可“以假为真”、而不愿“以真当假”时,则应把α取得很小,如0.01,甚至0.001。反之,则应把α取得大些。
更多追问追答
追问
我主要要的是统计与概率的公式,如:方差和一些乱七八糟的东西。谢了
追答
给个邮箱吧
小棉润远动1O
2012-04-20 · TA获得超过12.1万个赞
知道大有可为答主
回答量:4.2万
采纳率:5%
帮助的人:1.5亿
展开全部
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
追问
我主要要的是统计与概率的公式,如:方差和一些乱七八糟的东西。谢了
追答
概率论中定理   设实验E的样本空间为S,A为E的事件,B1,B2,...,Bn为S的一个划分,且P(Bi)>0(i=1,2,...,n),则   P(A)=P(A|B1)*P(B1) + P(A|B2)*P(B2) + ... + P(A|Bn)*P(Bn).   上式称为全概率公式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
昂立教育
2019-11-24 · 源于交大,专注中高考
昂立教育
向TA提问
展开全部
特别说明由于各方面情况的不断调整与变化,新课程教育在线提供的考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式