在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠B

在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线... 在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=
度;
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.
展开
殤乾
2012-06-16 · TA获得超过187个赞
知道答主
回答量:32
采纳率:0%
帮助的人:12.5万
展开全部
(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=
度;
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.

(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;
(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;
(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况

解:(1)90°.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
AB=AC ∠BAD=∠CAE AD=AE ∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;

(2)①α+β=180°,
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
AB=AC ∠BAD=∠CAE AD=AE
∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∵α+∠B+∠ACB=180°,
∴α+β=180°;

②当点D在射线BC上时,α+β=180°;
理由:∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE,
∵∠BAC+∠B+∠BCA=180°,
∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,
∴α+β=180°;
当点D在射线BC的反向延长线上时,α=β.
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵AD=AE,AB=AC,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.
望采纳,谢谢
asd792138465
2012-06-07 · TA获得超过130个赞
知道答主
回答量:87
采纳率:0%
帮助的人:17.7万
展开全部
解:因为∠DAE=∠BAC
所以∠DAB=∠EAC
又因为AD=AE,AB=AC
所以△ADB≌△AEC
所以∠ABD=∠ACE
即180-∠ABC=∠ACB+∠BCE
180-(180-a)/2=(180-a)/2+b
整理得a=b
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友ba0cc47fc81
2012-04-22 · TA获得超过377个赞
知道答主
回答量:120
采纳率:0%
帮助的人:52.5万
展开全部
(2)因为角BAC=角BAD+角DAC 角DAE=角DAC+角CAE,角BAC=角DAE,所以角BAD=角CAE,因为AB=AC AD=AE,所以三角形BAD和三角形CAE全等,所以角ACB=角ACE,因为角BAC+角ACE=角BCE=因为AB=AC,所以角B=角ACB,因为角BAC=a,所以角BCE=180-a,即角BCE=180-角BAC,所以a和B之间的关系是B=180-a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
非你不可tjp
2012-06-18
知道答主
回答量:31
采纳率:0%
帮助的人:9.9万
展开全部
解:(2)①α+β=180°
∵∠BAC=∠DAE
∴∠BAD=∠CAE
在△ABD与△ACE中,
AB=AC,∠BAD=∠CAE,AD=AE
∴△ABD全等于△ACE
∴∠B=∠ACE
∵∠BAC+∠B+∠ACB=180°
∴∠ACE+∠ACB+∠BAC=180°
∴α+β=180°
②当D在线段BC的左边时,α=β
当D在线段BC的右边时,α+β=180°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式