椭圆的数学题,求详细过程与分析。急~
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),经过点M(1,3/2),其离心率为1/2设直线l:y=kx+m(|k|<=1/2)于椭圆C相交于A、B两点,以线...
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),经过点M(1,3/2),其离心率为1/2设直线l:y=kx+m(|k|<=1/2)于椭圆C相交于A、B两点,以线段OA、OB为邻边作平行四边形OAPB。其中顶点P在椭圆上,O为坐标原点,求|OP|的取值范围。
展开
1个回答
展开全部
离心率e = c/a = 1/2 得b = √(3)/2 * a
(1, 3/2)在椭圆上,即1 / a^2 + 9/(4*3/4 * a^2) = 1,解得a = 2
所以椭圆方程为x^2 / 4 + y^2 / 3 = 1.
设A(x1, y1), B(x2, y2)
因为向量OP = OA + OB
所以P点坐标为(x3, y3) = (x1+x2, y1 + y2)
k = (y1-y2)/(x1-x2)
将x1^2 / 4 + y1^2 / 3 = 1
与x2^2 / 4 + y2^2 / 3 = 1
相减(用平方差公式),得
(x1 – x2)(x1 + x2)/4 + (y1 – y2)(y1+y2)/3 = 0
所以 (y1 + y2) / (x1 + x2) = -3(x1-x2)/4(y1-y2) = -3/4k
由-1/2 < k < 1/2可得 y3 / x3 > 3/2 或 y3 / x3 < -3/2
设y3 = d * x3, d < -3/2 或d > 3/2
因为P在椭圆上,所以(1/4 + d^2/3) * x3^2 = 1
|OP|^2 = (1+d^2) * x3^2 = (1+d^2)/(1/4 + d^2/3) = 3 + 3/(3+4d^2)
由前面d^2 > 9/4知,3≤|OP|^2 <3 + 3/(3 + 4*9/4) = 13/4
所以|OP|的取值范围是[√(3), √(13)/2)
(1, 3/2)在椭圆上,即1 / a^2 + 9/(4*3/4 * a^2) = 1,解得a = 2
所以椭圆方程为x^2 / 4 + y^2 / 3 = 1.
设A(x1, y1), B(x2, y2)
因为向量OP = OA + OB
所以P点坐标为(x3, y3) = (x1+x2, y1 + y2)
k = (y1-y2)/(x1-x2)
将x1^2 / 4 + y1^2 / 3 = 1
与x2^2 / 4 + y2^2 / 3 = 1
相减(用平方差公式),得
(x1 – x2)(x1 + x2)/4 + (y1 – y2)(y1+y2)/3 = 0
所以 (y1 + y2) / (x1 + x2) = -3(x1-x2)/4(y1-y2) = -3/4k
由-1/2 < k < 1/2可得 y3 / x3 > 3/2 或 y3 / x3 < -3/2
设y3 = d * x3, d < -3/2 或d > 3/2
因为P在椭圆上,所以(1/4 + d^2/3) * x3^2 = 1
|OP|^2 = (1+d^2) * x3^2 = (1+d^2)/(1/4 + d^2/3) = 3 + 3/(3+4d^2)
由前面d^2 > 9/4知,3≤|OP|^2 <3 + 3/(3 + 4*9/4) = 13/4
所以|OP|的取值范围是[√(3), √(13)/2)
追问
设y3 = d * x3, d 3/2
因为P在椭圆上,所以(1/4 + d^2/3) * x3^2 = 1
|OP|^2 = (1+d^2) * x3^2 = (1+d^2)/(1/4 + d^2/3) = 3 + 3/(3+4d^2)
由前面d^2 > 9/4知,3≤|OP|^2 <3 + 3/(3 + 4*9/4) = 13/4
所以|OP|的取值范围是[√(3), √(13)/2)
这点不明白呢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询